

File No. MA20003/18/0015

Project No.	CKL 1 - Flat 1	21 Cha Kwo Lin					
Date:	5-J	ul-22	Next Due Date:	4-Sep-22	Operator:	SK	
Equipment No.:	A-	01-18	Model No.:	TE 5170	Serial No.	0723	
			Ambient Condi	ition			
Temperatu	ire, Ta (K)	302	Pressure, Pa (mml	Hg)	753.2		

Orifice Transfer Standard Information						
Serial No. 3864 Slope, mc 0.05922 Intercept, bc -0.02420						
Last Calibration Date:	31-Jan-22	mc x Qstd + bc = $[\Delta H x (Pa/760) x (298/Ta)]^{1/2}$				
Next Calibration Date:						

	Calibration of TSP Sampler							
Calibration		Orfice	1		HVS			
Point	ΔH (orifice), in. of water	$[\Delta H \ x \ (Pa/760) \ x \ (298/Ta)]^{1/2}$	Qstd (CFM) X - axis	ΔW (HVS), in. of water	$[\Delta W \ x \ (Pa/760) \ x \ (298/Ta)]^{1/2} $ Y- axis			
1	12.8	3.54	60.15	9.9	3.11			
2	10.1	3.14	53.48	7.8	2.76			
3	8.4	2.87	48.81	5.6	2.34			
4	6.1	2.44	41.65	3.8	1.93			
5	3.4	1.82	31.20	1.8	1.33			
By Linear Regression of Y on X Slope , mw = 0.0627 Correlation coefficient* = 0.9975 *If Correlation Coefficient < 0.990, check and recalibrate.								
From the TSD Fi	ald Calibration C	Set Point urve, take Qstd = 43 CFM	Calculation					
		-						
	-	e "Y" value according to mw x Qstd + bw = [ΔW w x Qstd + bw) ² x (760 / Pa) x (·			
Remarks:								
Conducted by:	Wong Shi	ng Kwai Signature	<u> </u>	火.	Date: 5-Jul-22			
Checked by:	Henry I	Leung Signature	: \-lem	j Xorj	Date: 5-Jul-22			

File No. MA20003/55/0015

Project No.	CKL 2 - Flat 10)3 Cha Kwo Lii	ng Village			
Date:	5-J	ul-22	Next Due Date:	4-Sep-22	Operator:	SK
Equipment No.:	A-(01-55	Model No.:	TE 5170	Serial No.	1956
			Ambient Conditi	on		
Temperatu	ure, Ta (K)	302	Pressure, Pa (mmH	lg)	753.2	
				- 0		

Orifice Transfer Standard Information						
Serial No.	3864	Slope, mc	0.05922	Intercept, bc	-0.02420	
Last Calibration Date:	31-Jan-22	1	mc x Qstd + bo	$c = [\Delta H \ x \ (Pa/760) \ x \ (298/Ta)]$] ^{1/2}	
Next Calibration Date:	31-Jan-23	Qstd = { $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ -bc} / mc				

Calibration of TSP Sampler							
Calibration		Orfice			HVS		
Point	ΔH (orifice), in. of water	$[\Delta H x (Pa/760) x (298/Ta)]^{1/2}$	Qstd (CFM) X - axis	ΔW (HVS), in. of water		0) x (298/Ta)] ^{1/2} •axis	
1	12.8	3.54	60.15	9.8	3	.10	
2	10.8	3.25	55.29	7.6	2		
3	8.6	2.90	49.38	5.9	2	40	
4	5.3	2.28	38.85	3.2	1	.77	
5	2.9	1.68	28.85	1.8	1	.33	
By Linear Regression of Y on X Slope , mw =0.0563							
		urve, take Qstd = 43 CFM e "Y" value according to $mw \ge Qstd + bw = [\Delta W \ge Cordinate $		0.9/17->11/2			
Therefore, Se	et Point; W = (mv	$w \ge Q = (\Delta w)^2 = (\Delta w)^$					
Remarks:							
Conducted by:	Wong Shi	ng Kwai Signature:	k len	火.	Date:	5-Jul-22	
Checked by:	Henry I	Leung Signature:	- \-le-	g Xog	Date:	5-Jul-22	

CIN@TECH 🤳

File No. MA20003/04/0013

Project No.	KER 1 - Future	e Residential Dev						
Date:	11-,	Jul-22	Next Due Date:	10-Sep-22	Operator:	SK		
Equipment No.:	A-	01-04	Model No.:	TE 5170	Serial No.	10595		
	Ambient Condition							
Temperatu	ıre, Ta (K)	303.9	Pressure, Pa (mmH	Hg)	755.4			

Orifice Transfer Standard Information						
Serial No. 3864 Slope, mc 0.05922 Intercept, bc -0.02420						
Last Calibration Date:	31-Jan-22	1	mc x Qstd + bo	$c = [\Delta H \ x \ (Pa/760) \ x \ (298/Ta)]$	$]^{1/2}$	
Next Calibration Date:	31-Jan-23	Qstd = { $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ -bc} / mc				

Calibration of TSP Sampler							
Calibration		Orfice			HVS		
Point	ΔH (orifice), in. of water	$[\Delta H \ x \ (Pa/760) \ x \ (298/Ta)]^{1/2}$	Qstd (CFM) X - axis	ΔW (HVS), in. of water	$\frac{[\Delta W \ x \ (Pa/760) \ x \ (298/Ta)]^{1/2}}{Y-axis}$		
1	13.5	3.63	61.66	9.9	3.11		
2	10.8	3.24	55.19	7.5	2.70		
3	8.6	2.90	49.30	5.9	2.40		
4	5.6	2.34	39.86	3.5	1.85		
5	3.4	1.82	31.15	2.2	1.46		
By Linear Regression of Y on X Slope , mw = 0.0541 Intercept, bw : -0.2605 Correlation coefficient* = 0.9984							
		0, check and recalibrate.	-				
		.,					
		Set Point C	alculation				
From the TSP Fi	eld Calibration C	urve, take Qstd = 43 CFM					
From the Regres	sion Equation, the	e "Y" value according to					
Therefore, Se	et Point; W = (mv	$\mathbf{mw} \mathbf{x} \mathbf{Qstd} + \mathbf{bw} = [\Delta \mathbf{W} \mathbf{x}]$ w x Qstd + bw) ² x (760 / Pa) x (
Remarks:							
Conducted by:	Wong Shi	ng Kwai Signature	<u>k</u>	火.	Date: 11-Jul-22		
Checked by:	Henry I	Leung Signature	: Hen	~ Xor	Date: 11-Jul-22		

CIN@TECH 🤳

File No. MA20003/44/0013

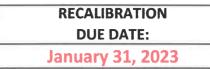
Project No.	KTD1 - Centre of Excellence in Paediatrics (Children's Hospital)						
Date:	11-	Jul-22	Next Due Date:	10-Sep-22	Operator:	SK	
Equipment No.:	A-(01-44	Model No.:	TE-5170	Serial No.	1316	
			Ambient Condit	ion			
Temperatu	ıre, Ta (K)	303.9	Pressure, Pa (mmI	Hg)	755.4		

Orifice Transfer Standard Information						
Serial No. 3864 Slope, mc 0.05922 Intercept, bc -0.02420						
Last Calibration Date:	31-Jan-22	I	nc x Qstd + bo	$c = [\Delta H \ x \ (Pa/760) \ x \ (298/Ta)]$	$]^{1/2}$	
Next Calibration Date:	31-Jan-23 $Qstd = \{ [\Delta H \ x \ (Pa/760) \ x \ (298/Ta)]^{1/2} - bc \} / mc$					

Calibration of TSP Sampler							
Calibration		Orfice			HVS		
Point	ΔH (orifice), in. of water	$[\Delta H \ x \ (Pa/760) \ x \ (298/Ta)]^{1/2}$	Qstd (CFM) X - axis	ΔW (HVS), in. of water	$[\Delta W \ x \ (Pa/760) \ x \ (298/Ta)]^{1/2}$ Y-axis		
1	13.4	3.61	61.43	10.1	3.14		
2	11.3	3.32	56.45	7.8	2.76		
3	8.8	2.93	49.86	5.9	2.40		
4	6.0	2.42	41.24	3.7	1.90		
5	3.5	1.85	31.60	2.1	1.43		
By Linear Regression of Y on X Slope , mw =							
	coefficient* =	0.9976	_				
*If Correlation C	Coefficient < 0.990	0, check and recalibrate.					
		Set Point C	alculation				
From the TSP Fi	eld Calibration C	urve, take Qstd = 43 CFM					
From the Regres	sion Equation, the	e "Y" value according to					
Therefore, Se	et Point; W = (mv	$\mathbf{mw} \mathbf{x} \mathbf{Qstd} + \mathbf{bw} = [\Delta \mathbf{W} \mathbf{x}]$ v x Qstd + bw) ² x (760 / Pa) x (. , .				
Remarks:							
			6				
Conducted by:	Wong Shi	ng Kwai Signature		火-	Date: 11-Jul-22		
Checked by:	Henry I	Leung Signature	- lem	, Xoy	Date: 11-Jul-22		

Next Calibration Date:

31-Jan-23


File No. MA20003/41/0013

Project No.	KTD 2D - Next to the SOR Office of Trunk Road T2 in Kai Tak Area							
Date:	11-Jul-22		Next Due Date:	10-5	Sep-22 Operator	r: SK		
Equipment No.:	D.: A-01-41		Model No.:	TE	5170 Serial No	5280		
Ambient Condition								
Temperature, Ta (K) 303.9		303.9	Pressure, Pa (mmHg) 755.4					
Orifice Transfer Standard Information								
Serial	l No.	3864	Slope, mc	0.05922	Intercept, bc	-0.02420		
Last Calibra	ation Date:	31-Jan-22	2 mc x Qstd + bc = $[\Delta H x (Pa/760) x (298/Ta)]^{1/2}$					

Qstd = { $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ -bc} / mc

Calibration of TSP Sampler								
Calibertic	Orfice			HVS				
Calibration Point	ΔH (orifice), in. of water	$[\Delta H \ x \ (Pa/760) \ x \ (298/Ta)]^{1/2}$	Qstd (CFM) X - axis	ΔW (HVS), in. of water	$\frac{[\Delta W \ x \ (Pa/760) \ x \ (298/Ta)]^{1/2}}{Y-axis}$			
1	13.5	3.63	61.66	10.4	3.18			
2	10.7	3.23	54.94	8.6	2.90			
3	8.8	2.93	49.86	6.3	2.48			
4	6.4	2.50	42.58	4.5	2.09			
5	3.6	1.87	32.04	2.4	1.53			
Slope , mw = Correlation	By Linear Regression of Y on X Slope , mw = 0.0571 Intercept, bw : -0.3160 Correlation coefficient* = 0.9972 *If Correlation Coefficient < 0.990, check and recalibrate.							
	Set Point Calculation							
		urve, take Qstd = 43 CFM						
From the Regres	sion Equation, the	e "Y" value according to						
mw x Qstd + bw = $[\Delta W x (Pa/760) x (298/Ta)]^{1/2}$								
Therefore, Set Point; $W = (mw x Qstd + bw)^2 x (760 / Pa) x (Ta / 298) = $ 4.69								
Remarks:								
Conducted by:	Wong Shi	ng Kwai Signature:	k \-le	<u>Д</u> .	Date: 11-Jul-22			
Checked by:	Henry I	Leung Signature:	- len	- May	Date: 11-Jul-22			

Certificate of Calibration

			Calibration	Cortificati	on Informat	ion		
				14				91/
Cal. Date:	January 31, 2022 Rootsi		meter S/N:	: 438320 Ta : 2		294	°K	
Operator:	Jim Tisch				Pa:	752.6	mm Hg	
Calibration	Model #:	TE-5025A	Calib	prator S/N:	3864			
			· · · · · ·					1
		Vol. Init	Vol. Final	ΔVol.	ΔTime	ΔΡ	ΔΗ	
	Run	(m3)	(m3)	(m3)	(min)	(mm Hg)	(in H2O)	
	1	1	2	1	1.4490	3.2	2.00	
	2	3	4	1	1.0320	6.4	4.00	
	3	5	6	1	0.9160	7.9	5.00	
	4	7	8	1	0.8730	8.8	5.50	
	5	9	10	1	0.7230	12.7	8.00	
			C	Data Tabula	tion]
			√∆H(<u>Pa</u> Pstd)(<u>Tstd</u>)			$\sqrt{\Delta H(Ta/Pa)}$	
	Vstd (m2)	Qstd	N 10 10	· ~ · ·	Va	Qa (x-axis)	1 N N	
	(m3) 0.9995	(x-axis) 0.6898	(y-ax) 1.416		0.9957	0.6872	(y-axis) 0.8839	
	0.9952	0.9643	2.003		0.9915	0.9608	1.2500	
	0.9932	1.0843	2.240		0.9895	1.0802	1.3976	
	0.9920	1.1363	2.349		0.9883	1.1321	1.4658	
	0.9868	1.3649	2.833		0.9831	1.3598	1.7678	
		m=	2.092			m=	1.31048	
	QSTD	D b=	-0.024	426	QA	b=	-0.01514	
		ľ=	0.999			r=	0.99993	
					ns			
	Vstd=	Vstd= ΔVol((Pa-ΔP)/Pstd)(Tstd/Ta)			Va=	∆Vol((Pa-∆	P)/Pa)	
	Qstd=	Vstd/∆Time			Qa= Va/ΔTime			
		For subseque			nt flow rate calculations:			
	Qstd= $1/m\left(\left(\sqrt{\Delta H\left(\frac{Pa}{Pstd}\right)\left(\frac{Tstd}{Ta}\right)}\right)$			-))-ь)	Qa=	1/m ((√∆H	l(Та/Ра))-b)	
	Standard	Conditions]					
Tstd: 298.15 °K						RECA	LIBRATION	
Pstd:		mm Hg				mmonde		n nor 1000
		(ey	n H2O)		US EPA recommends annual recalibration per 1998 40 Code of Federal Regulations Part 50 to 51,			
		ter reading (i eter reading					, Reference Meth	
		perature (°K)					ended Particulat	
		ressure (mm						
	b: intercept				th	e atmosphe	ere, 9.2.17, page	50
b: intercept								

isch Environmental, Inc.

45 South Miami Avenue

illage of Cleves, OH 45002

www.tisch-env.com TOLL FREE: (877)263-7610 FAX: (513)467-9009

Certificate of Calibration - Wind Monitoring Station

Description:	Yau Lai Estate, Bik Lai House
Manufacturer:	Davis Instruments
Model No.:	<u>Davis7440</u>
Serial No.:	<u>MC01010A44</u>
Equipment No.:	<u>SA-03-04</u>
Date of Calibration	<u>19-Feb-2022</u>
Next Due Date	<u>19-Aug-2022</u>

1. Performance check of Wind Speed

Wind Sp	beed, m/s	Difference D (m/s)
Wind Speed Reading (V1) Anemometer Value (V2)		D = V1 - V2
0.0	0.0	0.0
1.5	1.5	0.0
2.5	2.5	0.0
4.2	4.3	-0.1

2. Performance check of Wind Direction

Wind Di	rection (°)	Difference D (°)
Wind Direction Reading (W1)	Marine Compass Value (W2)	$\mathbf{D} = \mathbf{W1} - \mathbf{W2}$
0	0	0.0
90	90	0.0
180	180	0.0
270	270	0.0

Test Specification:

- 1. Performance Wind Speed Test The wind meter was on-site calibrated against the anemometer
- 2. Performance Wind Direction Test The wind meter was on-site calibrated against the marine compass at four direction

<u>Certificate of Calibration - Wind Monitoring Station</u>

Description:	Yau Lai Estate, Bik Lai House
Manufacturer:	Davis Instruments
Model No.:	<u>Davis7440</u>
Serial No.:	<u>MC01010A44</u>
Equipment No.:	<u>SA-03-04</u>
Date of Calibration	<u>19-Aug-2022</u>
Next Due Date	<u>19-Feb-2023</u>

1. Performance check of Wind Speed

Wind Sp	beed, m/s	Difference D (m/s)
Wind Speed Reading (V1)Anemometer Value (V2)		D = V1 - V2
0.0	0.0	0.0
1.5	1.5	0.0
2.5	2.6	-0.1
4.0	4.0	0.0

2. Performance check of Wind Direction

Wind Di	rection (°)	Difference D (°)
Wind Direction Reading (W1)	Marine Compass Value (W2)	$\mathbf{D} = \mathbf{W1} - \mathbf{W2}$
0	0	0.0
90	90	0.0
180	180	0.0
270	270	0.0

Test Specification:

1. Performance Wind Speed Test - The wind meter was on-site calibrated against the anemometer

2. Performance Wind Direction Test - The wind meter was on-site calibrated against the marine compass at four direction

Calibrated by: ______ Approved by: _______ Henry Leung