

File No. MA20003/18/0015

Project No.	CKL 1 - Flat 1	21 Cha Kwo Lin					
Date:	5-J	Jul-22	Next Due Date:	4-Sep-22	Operator:	SK	
Equipment No.:	A-	01-18	Model No.:	TE 5170	Serial No.	0723	
			Ambient Condi	ition			
Temperatu	ire, Ta (K)	302	Pressure, Pa (mml	Hg)	753.2		

Orifice Transfer Standard Information							
Serial No. 3864 Slope, mc 0.05922 Intercept, bc -0.02420							
Last Calibration Date:	31-Jan-22	31-Jan-22 mc x Qstd + bc = $[\Delta H x (Pa/760) x (298/Ta)]^{1/2}$					
Next Calibration Date:							

		Calibration of	f TSP Sampler			
Calibration		Orfice	1		HVS	
Point	ΔH (orifice), in. of water	$[\Delta H \ x \ (Pa/760) \ x \ (298/Ta)]^{1/2}$	Qstd (CFM) X - axis	ΔW (HVS), in. of water	$[\Delta W \ x \ (Pa/760) \ x \ (298/Ta)]^{1/2} $ Y- axis	
1	12.8	3.54	60.15	9.9	3.11	
2	10.1	3.14	53.48	7.8	2.76	
3	8.4	2.87	48.81	5.6	2.34	
4	6.1	2.44	41.65	3.8	1.93	
5	3.4	1.82	31.20	1.8	1.33	
By Linear Regression of Y on X Slope , mw = 0.0627 Correlation coefficient* = 0.9975 *If Correlation Coefficient < 0.990, check and recalibrate.						
From the TSD Fi	ald Calibration C	Set Point urve, take Qstd = 43 CFM	Calculation			
		-				
	-	e "Y" value according to mw x Qstd + bw = [ΔW w x Qstd + bw) ² x (760 / Pa) x (·	
Remarks:						
Conducted by:	Wong Shi	ng Kwai Signature	<u> </u>	火.	Date: 5-Jul-22	
Checked by:	Henry I	Leung Signature	: \-lem	j Xorj	Date: 5-Jul-22	

File No. MA20003/55/0015

Project No.	CKL 2 - Flat 10					
Date:	5-J	ul-22	Next Due Date:	4-Sep-22	Operator:	SK
Equipment No.:	A-(01-55	Model No.:	TE 5170	Serial No.	1956
			Ambient Conditi	on		
Temperatu	ure, Ta (K)	302	Pressure, Pa (mmH	lg)	753.2	
				- 0		

Orifice Transfer Standard Information						
Serial No.	3864	Slope, mc	0.05922	Intercept, bc	-0.02420	
Last Calibration Date:	31-Jan-22	mc x Qstd + bc = $[\Delta H x (Pa/760) x (298/Ta)]^{1/2}$				
Next Calibration Date:	31-Jan-23	Qstd = { $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ -bc} / mc				

Calibration of TSP Sampler							
Calibration		Orfice			HVS		
Point	ΔH (orifice), in. of water	$[\Delta H x (Pa/760) x (298/Ta)]^{1/2}$	Qstd (CFM) X - axis	ΔW (HVS), in. of water		0) x (298/Ta)] ^{1/2} •axis	
1	12.8	3.54	60.15	9.8	3	.10	
2	10.8	3.25	55.29	7.6	2		
3	8.6	2.90	49.38	5.9	2	40	
4	5.3	2.28	38.85	3.2	1	.77	
5	2.9	1.68	28.85	1.8	1	.33	
By Linear Regression of Y on X Slope , mw =0.0563							
		urve, take Qstd = 43 CFM e "Y" value according to $mw \ge Qstd + bw = [\Delta W \ge Cordinate $		0.9/17->11/2			
Therefore, Se	et Point; W = (mv	$w \ge Q = (\Delta w)^2 = (\Delta w)^$					
Remarks:							
Conducted by:	Wong Shi	ng Kwai Signature:	k len	火.	Date:	5-Jul-22	
Checked by:	Henry I	Leung Signature:	len	g Xog	Date:	5-Jul-22	

CIN@TECH 🤳

File No. MA20003/04/0013

Project No.	KER 1 - Future	e Residential Dev						
Date:	11-,	Jul-22	Next Due Date:	10-Sep-22	Operator:	SK		
Equipment No.:	A-	01-04	Model No.:	TE 5170	Serial No.	10595		
	Ambient Condition							
Temperatu	ıre, Ta (K)	303.9	Pressure, Pa (mmH	Hg)	755.4			

Orifice Transfer Standard Information						
Serial No. 3864 Slope, mc 0.05922 Intercept, bc -0.02420						
Last Calibration Date:	31-Jan-22	1	mc x Qstd + bo	$c = [\Delta H \ x \ (Pa/760) \ x \ (298/Ta)]$	$]^{1/2}$	
Next Calibration Date:	31-Jan-23	Qstd = { $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ -bc} / mc				

Calibration of TSP Sampler							
Calibration		Orfice			HVS		
Point	ΔH (orifice), in. of water	$[\Delta H \ x \ (Pa/760) \ x \ (298/Ta)]^{1/2}$	Qstd (CFM) X - axis	ΔW (HVS), in. of water	$\frac{[\Delta W \ x \ (Pa/760) \ x \ (298/Ta)]^{1/2}}{Y-axis}$		
1	13.5	3.63	61.66	9.9	3.11		
2	10.8	3.24	55.19	7.5	2.70		
3	8.6	2.90	49.30	5.9	2.40		
4	5.6	2.34	39.86	3.5	1.85		
5	3.4	1.82	31.15	2.2	1.46		
Slope, mw =	ression of Y on X 0.0541		Intercept, bw :	-0.260	15		
	coefficient* =	0.9984	-				
*If Correlation C	Coefficient < 0.99	0, check and recalibrate.					
		Set Point C	alculation				
From the TSP Fi	eld Calibration C	urve, take Qstd = 43 CFM					
From the Regres	sion Equation, the	e "Y" value according to					
Therefore, Se	et Point; W = (mv	$\mathbf{mw} \mathbf{x} \mathbf{Qstd} + \mathbf{bw} = [\mathbf{\Delta W} = \mathbf{w} \mathbf{w} \mathbf{x} \mathbf{Qstd} + \mathbf{bw}^{2} \mathbf{x} (760 / Pa) $. , .				
Remarks:							
Conducted by:	Wong Shi	ng Kwai Signature	: <u>k</u>	火.	Date: 11-Jul-22		
Checked by:	Henry I	Leung Signature	: \-len	, Xoy	Date: 11-Jul-22		

CIN@TECH 🤳

File No. MA20003/44/0013

Project No.	KTD1 - Centre	of Excellence in						
Date:	11-	Jul-22	Next Due Date:	10-S	ep-22	Operator:	SK	
Equipment No.:	A-	01-44	Model No.:	TE-:	5170	Serial No.	1316	
	Ambient Condition							
Temperatu	re, Ta (K)	303.9	Pressure, Pa (mml	Hg)		755.4		

Orifice Transfer Standard Information						
Serial No. 3864 Slope, mc 0.05922 Intercept, bc -0.02420						
Last Calibration Date:	31-Jan-22	1	mc x Qstd + bo	$c = [\Delta H \ x \ (Pa/760) \ x \ (298/Ta)]$	$]^{1/2}$	
Next Calibration Date:	31-Jan-23	Qstd = { $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ -bc} / mc				

Calibration of TSP Sampler							
Calibration		Orfice			HVS		
Point	ΔH (orifice), in. of water	$[\Delta H \ x \ (Pa/760) \ x \ (298/Ta)]^{1/2}$	Qstd (CFM) X - axis	ΔW (HVS), in. of water	$[\Delta W \ge (Pa/760) \ge (298/Ta)]^{1/2}$ Y-axis		
1	13.4	3.61	61.43	10.1	3.14		
2	11.3	3.32	56.45	7.8	2.76		
3	8.8	2.93	49.86	5.9	2.40		
4	6.0	2.42	41.24	3.7	1.90		
5	3.5	1.85	31.60	2.1	1.43		
Slope , mw = Correlation	coefficient* =		Intercept, bw : -	-0.398	33		
		Set Point C	alculation				
From the TSP Fi	ald Calibration C	urve, take Qstd = 43 CFM					
		e "Y" value according to					
	-	$\mathbf{mw} \mathbf{x} \mathbf{Qstd} + \mathbf{bw} = [\Delta \mathbf{W} \mathbf{x}]$ v x Qstd + bw) ² x (760 / Pa) x (
Remarks:							
Conducted by:	Wong Shi	ng Kwai Signature:	k	火.	Date: 11-Jul-22		
Checked by:	Henry I	Leung Signature:	- lem	, and	Date: 11-Jul-22		

File No. MA20003/41/0013

Project No.	ect No. KTD 2D - Next to the SOR Office of Trunk Road T2 in Kai Tak Area							
Date:	11-Jul-22		Next Due Date:	Next Due Date: 10-Sep-22		Operator:	SK	
Equipment No.:	Io.:A-01-41		Model No.:	TE 5170		Serial No.	5280	
			Ambient C	ondition				
Temperatu	ıre, Ta (K)	303.9	Pressure, Pa	(mmHg)		755.4		
Orifice Transfer Standard Information								
Serial No. 3864 Slope, mc 0.05922 Intercept, bc -0.02420								

Serial No.	3864	Slope, mc	0.05922	Intercept, bc	-0.02420		
Last Calibration Date:	31-Jan-22	mc x Qstd + bc = $[\Delta H x (Pa/760) x (298/Ta)]^{1/2}$					
Next Calibration Date:	31-Jan-23	Qstd = { $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ -bc} / mc					
	•						

	Calibration of TSP Sampler								
Calibration		Orfice			HVS				
Point	ΔH (orifice), in. of water	$[\Delta H \ x \ (Pa/760) \ x \ (298/Ta)]^{1/2}$	Qstd (CFM) X - axis	ΔW (HVS), in. of water	$[\Delta W \ x \ (Pa/760) \ x \ (298/Ta)]^{1/2}$ Y-axis				
1	13.5	3.63	61.66	10.4	3.18				
2	10.7	3.23	54.94	8.6	2.90				
3	8.8	2.93	49.86	6.3	2.48				
4	6.4	2.50	42.58	4.5	2.09				
5	3.6	1.87	32.04	2.4	1.53				
By Linear Regression of Y on X Slope , mw =0.0571 Intercept, bw :0.3160 Correlation coefficient* =0.9972 *If Correlation Coefficient < 0.990, check and recalibrate.									
From the TSP Fi	ald Calibration C	Set Point (urve, take Qstd = 43 CFM	Calculation						
		e "Y" value according to							
Therefore, Se	$mw \ x \ Qstd + bw = [\Delta W \ x \ (Pa/760) \ x \ (298/Ta)]^{1/2}$ Therefore, Set Point; W = (mw x Qstd + bw) ² x (760 / Pa) x (Ta / 298) =4.69								
Remarks:									
Conducted by:	Wong Shi	ng Kwai Signaturo	e:	y. y Xoy	Date: 11-Jul-22				
Checked by:	Henry I	Leung Signature	e: \-lan	- May	Date: 11-Jul-22				

File No. MA20003/18/0016

Project No.	roject No. CKL 1 - Flat 121 Cha Kwo Ling Village					_		
Date:	5-Se	p-22	Next Due Date:	5-N	Jov-22	Operator:	SK	
Equipment No.:	A-01	-18	Model No.:	TE 5170		Serial No.	0723	
			Ambient	Condition				
Temperatu	re, Ta (K)	304.1	Pressure, Pa	(mmHg)		753.4		
			ifice Transfer Sta					
Serial		3864	Slope, mc	0.05922	Intercept		-0.02420	
Last Calibration Date:		31-Jan-22	mc x Qstd + bc = $[\Delta H x (Pa/760) x (298/Ta)]^{1/2}$					
Next Calibra	ation Date:	31-Jan-23		$Qstd = \{ [\Delta H x]$	x (Pa/760) x (298	/Ta)] ^{1/2} -bc}	/ mc	
		•	Calibration of	TSP Sampler				
		Or		ior sampler		HVS		
Calibration Point	ΔH (orifice), in. of water		0) x $(298/Ta)$] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of water		760) x (298/Ta)] ^{1/2} Y- axis	
1	12.7	3.51		59.72	9.7		3.07	
2	10.0	3.12		53.04	7.7		2.73	
3	8.3	2.84		48.36	5.5		2.31	
4	6.0	2.41		41.18	3.7		1.90	
5	3.3	1	.79	30.64 1.7			1.29	
By Linear Regr Slope , mw =	ression of Y on X 0 0625	í.		Intercept, bw :	-0.653	80		
	coefficient* =	-	9975	intercept, o				
	Coefficient < 0.99			-				
			Set Point (Calculation				
From the TSP Fi	ield Calibration C	urve, take Qstd	= 43 CFM					
From the Regres	sion Equation, th	e "Y" value acco	ording to					
			\mathbf{Q} std + bw = [$\Delta \mathbf{W}$	v (Do/760) v (1	08/T a)1 ^{1/2}			
		IIIW X ($z \sin + bw = [\Delta w]$	X (Fa/700) X (2	.96/1a)]			
Therefore, Se	et Point; W = (m	w x Qstd + bw $)^{2}$	² x (760 / Pa) x (Ta / 298) =	4.26			
Remarks:								

Conducted by:	Wong Shing Kwai	Signature:	M.	Date:	5-Sep-22
Checked by:	Henry Leung	Signature:	-leng drag	Date:	5-Sep-22

 $F:\Cinotech\ Solutions\Equipment\Calibration\ Cert\HVS\new\MA20003_20220905_CKL1_(A-01-18)$

File No. MA20003/55/0016

Project No.	CKL 2 - Flat 10	3 Cha Kwo Ling	Village				
Date:	5-Se	ep-22	Next Due Date:	5-N	Jov-22	Operator:	SK
Equipment No.:	A-0	1-55	Model No.:	TE 5170		Serial No.	1956
			Ambient C	ondition			
Temperatur	re, Ta (K)	304.1	Pressure, Pa			753.4	
		Or	ifice Transfer Star	ndard Informa	ation		
Serial No.		3864	Slope, mc	0.05922	Intercept		-0.02420
Last Calibra	ation Date:	31-Jan-22			$c = [\Delta H x (Pa/760)]$		
Next Calibra	ation Date:	31-Jan-23	($Qstd = \{ [\Delta H x] \}$	(Pa/760) x (298/7	Γa)] ^{1/2} -bc} / m	ic
		•					
			Calibration of 7	FSP Sampler			
Calibration		Or	fice	-		HVS	1/2
Point	ΔH (orifice), in. of water	[ΔH x (Pa/76	50) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of water		50) x (298/Ta)] ^{1/2} '-axis
1	12.7		3.51		9.7		3.07
2	10.7		3.22		7.5		2.70
3	8.5		2.87	48.93	5.7		2.35
4	5.2		2.25	38.36	3.1		1.74
5	2.8		1.65	28.26	1.7		1.29
By Linear Regr Slope , mw = Correlation		_	.9966	Intercept, bw =	-0.368	3	
*If Correlation C		90, check and rec	calibrate.				
			Set Point Ca	alculation			
From the TSP Fi	eld Calibration (Curve, take Qstd	= 43 CFM				
From the Regres	sion Equation, tl	ne "Y" value acco	ording to				
		mw x O	$\mathbf{bstd} + \mathbf{bw} = [\Delta \mathbf{W} \mathbf{x}]$	(Pa/760) x (29	$98/T_{\rm P}$		
Therefore, Se	et Point; W = (m	w x Qstd + bw)	² x (760 / Pa) x (7	Га / 298) =	4.36		
Remarks:							
Conducted by:	Wong Sh	iing Kwai	Signature:	k	<u>у</u> .	Date:	5-Sep-22
Checked by:	Henry	Leung	Signature:	-lan	1 May	Date:	5-Sep-22

CIN@TECH 4

File No. MA20003/04/0014

Project No.	KER 1 - Future	e Residential De	velopment at Kerry Godov	vn			
Date:	10-5	Sep-22	Next Due Date:	10-Nov-22	Operator:	SK	
Equipment No.:	A-(01-04	Model No.:	TE 5170	Serial No.	10595	
			Ambient Condit	ion			
Temperatu	ure, Ta (K)	301.9	Pressure, Pa (mml	Hg)	758.6		

Orifice Transfer Standard Information						
Serial No. 3864 Slope, mc 0.05922 Intercept, bc -0.02420						
Last Calibration Date:	31-Jan-22	mc x Qstd + bc = $[\Delta H x (Pa/760) x (298/Ta)]^{1/2}$				
Next Calibration Date:	31-Jan-23	Qstd = { $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ -bc} / mc				

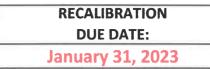
Calibration of TSP Sampler							
Calibration		Orfice		HVS			
Point	ΔH (orifice), in. of water	$[\Delta H x (Pa/760) x (298/Ta)]^{1/2}$	Qstd (CFM) X - axis	ΔW (HVS), in. of water	$[\Delta W \ x \ (Pa/760) \ x \ (298/Ta)]^{1/2}$ Y-axis		
1	13.7	3.67	62.45	10.1	3.15		
2	11.0	3.29	56.00	7.6	2.74		
3	8.8	2.94	50.13	6.1	2.45		
4	5.8	2.39	40.78	3.7	1.91		
5	3.6	1.88	32.21	2.3	1.51		
By Linear Regression of Y on X Slope , mw = 0.0544 Intercept, bw :0.2760 Correlation coefficient* = *If Correlation Coefficient < 0.990, check and recalibrate.							
*If Correlation C	Coefficient < 0.990	J, CHECK and recalibrate.	alculation				
From the TSP Fi	eld Calibration C	urve, take Qstd = 43 CFM					
	From the Regression Equation, the "Y" value according to $\mathbf{mw} \mathbf{x} \mathbf{Qstd} + \mathbf{bw} = [\Delta \mathbf{W} \mathbf{x} (\mathbf{Pa}/760) \mathbf{x} (298/\mathbf{Ta})]^{1/2}$ Therefore, Set Point; W = (mw x Qstd + bw) ² x (760 / Pa) x (Ta / 298) =						
Remarks:							
Conducted by:	Wong Shi	ng Kwai Signature:	K	火.	Date: 10-Sep-22		
Checked by:	Henry I	Leung Signature:	-len	, Xoz	Date: 10-Sep-22		

File No. MA20003/44/0014

Project No.	KTD1 - Centre					
Date:	10-5	Sep-22	Next Due Date:	10-Nov-22	Operator:	SK
Equipment No.:	pment No.: A-01-44		Model No.: TE-5170		Serial No.	1316
			Ambient Condit	ion		
Temperatu	ure, Ta (K)	301.9	Pressure, Pa (mml	Hg)	758.6	

Orifice Transfer Standard Information						
Serial No. 3864 Slope, mc 0.05922 Intercept, bc -0.02420						
Last Calibration Date:	31-Jan-22	mc x Qstd + bc = $[\Delta H x (Pa/760) x (298/Ta)]^{1/2}$				
Next Calibration Date:	31-Jan-23	Qstd = { $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ -bc} / mc				

Calibration of TSP Sampler								
Calibration		Orfice			HVS			
Point	ΔH (orifice), in. of water	[ΔH x (Pa/760) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of water	$[\Delta W \ x \ (Pa/760) \ x \ (298/Ta)]^{1/2}$ Y-axis			
1	13.6	3.66	62.22	10.3	3.19			
2	11.4	3.35	57.00	8.0	2.81			
3	9.0	2.98	50.69	6.1	2.45			
4	6.2	2.47	42.14	4.0	1.99			
5	3.7	1.91	32.65	2.4	1.54			
By Linear Regression of Y on X Slope , mw =0.0552 Intercept, bw :0.3066								
	coefficient* =	0.9974	_					
*If Correlation C	Coefficient < 0.990), check and recalibrate.						
		Set Point C	Calculation					
		urve, take Qstd = 43 CFM						
From the Regres	sion Equation, the	e "Y" value according to						
		$\mathbf{m}\mathbf{w} \ge \mathbf{Q}\mathbf{s}\mathbf{t}\mathbf{d} + \mathbf{b}\mathbf{w} = [\Delta \mathbf{W}$	x (Pa/760) x (29	98/Ta)] ^{1/2}				
Therefore, Se	et Point; W = (mv	$(x + bw)^2 x (760 / Pa) x ($	Ta / 298) =	4.33				
Remarks:								
Conducted by:	Wong Shi	ng Kwai Signature	:X	<u>у</u>	Date: 10-Sep-22			
Checked by:	Henry I	Leung Signature	: \-lem	, drag	Date: 10-Sep-22			


File No. MA20003/41/0014

Project No.	KTD 2D - Next to the SOR Office of Trunk Road T2 in Kai Tak Area								
Date:	10-Sep-22		Next Due Date:	10-Nov-22	Operator:	SK			
Equipment No.:	ent No.: A-01-4		Model No.:	TE 5170	Serial No.	5280			
			Ambient Condit	tion					
Temperature, Ta (K)301.9Pressure, Pa (mmHg)758.6									
	Orifice Transfer Standard Information								

OTTICE Transfer Standard Information							
Serial No.	Serial No. 3864		0.05922	Intercept, bc	-0.02420		
Last Calibration Date:	31-Jan-22	mc x Qstd + bc = $[\Delta H x (Pa/760) x (298/Ta)]^{1/2}$					
Next Calibration Date:	31-Jan-23		$Qstd = \{ [\Delta H x]$	$\left(Pa/760\right) x \left(298/Ta\right) \right] ^{1/2} \text{-bc} \} / $	mc		

Calibration of TSP Sampler								
Calibration		Orfice	HVS					
Point	ΔH (orifice), in. of water	$[\Delta H \ x \ (Pa/760) \ x \ (298/Ta)]^{1/2}$	Qstd (CFM) X - axis	ΔW (HVS), in. of water	$[\Delta W \ x \ (Pa/760) \ x \ (298/Ta)]^{1/2}$ Y-axis			
1	13.7	3.67	62.45	10.6	3.23			
2	10.9	3.28	55.75	8.8	2.94			
3	9.0	2.98	50.69	6.5	2.53			
4	6.5	2.53	43.14	4.6	2.13			
5	3.7	1.91	32.65	2.4	1.54			
Slope , mw = Correlation	By Linear Regression of Y on X Slope , mw =0.0580 Intercept, bw :0.3636 Correlation coefficient* =0.9976 *If Correlation Coefficient < 0.990, check and recalibrate.							
		Set Point C	alculation					
From the TSP Field Calibration Curve, take Qstd = 43 CFM From the Regression Equation, the "Y" value according to $\mathbf{mw} \mathbf{x} \mathbf{Qstd} + \mathbf{bw} = [\Delta \mathbf{W} \mathbf{x} (\mathbf{Pa}/760) \mathbf{x} (298/\mathbf{Ta})]^{1/2}$								
Therefore, Set Point; $W = (mw x Qstd + bw)^2 x (760 / Pa) x (Ta / 298) = $ 4.61								
Remarks:								
Conducted by:	Wong Shi		:X	<u>у</u> .	Date: 10-Sep-22			
Checked by:	Henry I	Leung Signature	: \-len	N- JXv7	Date: 10-Sep-22			

Certificate of Calibration

			Calibration	Certificatio	on Informat	ion			
Cal. Date:	January 31	, 2022	Rootsi	meter S/N:	438320	Ta: 294		°K	
Operator:	Jim Tisch				Pa:	752.6	mm Hg		
			prator S/N:	3864			0		
								1	
		Vol. Init	Vol. Final	ΔVol.	ΔTime	ΔΡ	ΔΗ		
	Run	(m3)	(m3)	(m3)	(min)	(mm Hg)	(in H2O)		
	1	1	2	1	1.4490	3.2	2.00		
	2	3	4	1	1.0320	6.4	4.00		
	3	5	6	1	0.9160	7.9	5.00		
	4	7	8	1	0.8730	8.8	5.50 8.00		
		9				1.2.7	8.00]	
	L			Data Tabula	tion				
	Vstd	Qstd	$\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right)}$)(<u>Tstd</u>) Ta)		Qa	$\sqrt{\Delta H (Ta/Pa)}$		
	(m3)	(x-axis)	(y-ax	is)	Va	(x-axis)	(y-axis)		
	0.9995	0.6898	1.416		0.9957	0.6872	0.8839		
	0.9952	0.9643	2.003		0.9915	0.9608	1.2500		
	0.9932	1.0843	2.240		0.9895	1.0802	1.3976		
	0.9920	1.1363	2.349		0.9883	1.1321	1.4658		
	0.9868	1.3649	2.833		0.9831	1.3598	1.7678		
			2.09281			m=	1.31048		
	QSTD	b=	-0.024		QA	b=	-0.01514		
	r=		0.99993		r=		0.99993	I	
				Calculatio					
			/Pstd)(Tstd/Ta	a)	Va= ΔVol((Pa-ΔP)/Pa)				
	Qstd=	Vstd/∆Time			Qa= Va/ΔTime				
		For subsequ			ent flow rate calculations:				
	Qstd=	Qstd= $1/m \left(\sqrt{\Delta H \left(\frac{Pa}{Pstd} \right) \left(\frac{Tstd}{Ta} \right)} \right)$			$Qa = 1/m\left(\left(\sqrt{\Delta H(Ta/Pa)}\right) - b\right)$				
	Standard	Conditions							
Tstd:					RECALIBRATION				
Pstd:		mm Hg			US EPA recommends annual recalibration per 1998				
Key ΔH: calibrator manometer reading (in H2O)			n H2O)		40 Code of Federal Regulations Part 50 to 51,				
		eter reading (i			Appendix B to Part 50, Reference Method for the				
		perature (°K)			Determination of Suspended Particulate Matter i				
		ressure (mm					erided Particulation erided Particulation erided Particulation erided eride		
b: intercept					LTI(e Aunosphe	sie, 3.2.17, page	50	
m: slope									

isch Environmental, Inc.

45 South Miami Avenue

illage of Cleves, OH 45002

www.tisch-env.com TOLL FREE: (877)263-7610 FAX: (513)467-9009

<u>Certificate of Calibration - Wind Monitoring Station</u>

Description:	Yau Lai Estate, Bik Lai House
Manufacturer:	Davis Instruments
Model No.:	<u>Davis7440</u>
Serial No.:	<u>MC01010A44</u>
Equipment No.:	<u>SA-03-04</u>
Date of Calibration	<u>19-Aug-2022</u>
Next Due Date	<u>19-Feb-2023</u>

1. Performance check of Wind Speed

Wind Sp	beed, m/s	Difference D (m/s)
Wind Speed Reading (V1)	Anemometer Value (V2)	D = V1 - V2
0.0	0.0	0.0
1.5	1.5	0.0
2.5	2.6	-0.1
4.0	4.0	0.0

2. Performance check of Wind Direction

Wind Di	rection (°)	Difference D (°)
Wind Direction Reading (W1)	Marine Compass Value (W2)	$\mathbf{D} = \mathbf{W1} - \mathbf{W2}$
0	0	0.0
90	90	0.0
180	180	0.0
270	270	0.0

Test Specification:

1. Performance Wind Speed Test - The wind meter was on-site calibrated against the anemometer

2. Performance Wind Direction Test - The wind meter was on-site calibrated against the marine compass at four direction

Calibrated by: ______ Approved by: _______ Henry Leung