High-Volume TSP Sampler

5-POINT CALIBRATION DATA SHEET

File No \qquad
Project No. CKL 1 - Flat 121 Cha Kwo Ling Village

Date:	5-Nov-22	Next Due Date:	5-Jan-23	Operator:	SK
	Equipment No.:	Model No.:	TE 5170	Serial No.	0723

Ambient Condition			
Temperature, $\mathrm{Ta}(\mathrm{K})$	294.5	Pressure, $\mathrm{Pa}(\mathrm{mmHg})$	764.3

Orifice Transfer Standard Information					
Serial No.	3864	Slope, mc	0.05922	Intercept, bc	-0.02420
Last Calibration Date:	31-Jan-22	$\begin{aligned} & \mathrm{mc} \times \text { Qstd }+\mathrm{bc}=[\Delta \mathrm{H} \times(\mathrm{Pa} / 760) \times(298 / \mathrm{Ta})]^{1 / 2} \\ & \text { Qstd }=\left\{[\Delta \mathrm{H} \times(\mathrm{Pa} / 760) \times(298 / \mathrm{Ta})]^{1 / 2}-\mathrm{bc}\right\} / \mathrm{mc} \end{aligned}$			
Next Calibration Date:	31-Jan-23				

Remarks:

	Conducted by:	Wong Shing Kwai	Signature:		Date:	5-Nov-22
	Checked by:	Henry Leung	Signature:		Date:	5-Nov-22

Project No. CKL 2 - Flat 103 Cha Kwo Ling Village

Date:	5-Nov-22
Equipment No.:	A-01-55

Next Due Date:	5-Jan-23
Model No.:	TE 5170

Operator:	SK
Serial No.	1956

Ambient Condition			
Temperature, $\mathrm{Ta}(\mathrm{K})$	294.5	Pressure, $\mathrm{Pa}(\mathrm{mmHg})$	764.3

Remarks:

Conducted by \qquad
Wong Shang Kwai
Signature: \qquad Date: 5-Nov-22
\qquad

Checked by: \qquad Signature: $\operatorname{lom}_{\operatorname{mom}} \alpha_{1}$ Date: \qquad

High-Volume TSP Sampler

5-POINT CALIBRATION DATA SHEET

File No. MA20003/04/0015
Project No. KER 1 - Future Residential Development at Kerry Godown
Date: \qquad
Next Due Date: \quad 10-Jan-23

Operator:	SK
Serial No.	10595

Equipment No.: \qquad
Model No.: \quad TE $5170 \quad$ Serial No. $\quad 10595$

Ambient Condition			
Temperature, $\mathrm{Ta}(\mathrm{K})$	297.8	Pressure, $\mathrm{Pa}(\mathrm{mmHg})$	762.6

Orifice Transfer Standard Information					
Serial No.	3864	Slope, mc	0.05922	Intercept, bc	-0.02420
Last Calibration Date:	31-Jan-22	$\begin{aligned} & \text { mc } \times \text { Qstd }+\mathrm{bc}=[\Delta \mathrm{H} \times(\mathrm{Pa} / 760) \times(298 / \mathrm{Ta})]^{1 / 2} \\ & \text { Qstd }=\left\{[\Delta \mathrm{H} \times(\mathrm{Pa} / 760) \times(298 / \mathrm{Ta})]^{1 / 2}-\mathrm{bc}\right\} / \mathrm{mc} \end{aligned}$			
Next Calibration Date:	31-Jan-23				

Calibration of TSP Sampler					
Calibration Point	Orfice			HVS	
	$\Delta \mathrm{H}$ (orifice), in. of water	$[\Delta \mathrm{H} \times(\mathrm{Pa} / 760) \times(298 / \mathrm{Ta})]^{1 / 2}$	$\begin{gathered} \text { Qstd (CFM) } \\ \mathbf{X} \text { - axis } \end{gathered}$	$\Delta \mathrm{W}$ (HVS), in. of water	$\begin{gathered} {[\Delta \mathrm{W} \times(\mathrm{Pa} / 760) \times(298 / \mathrm{Ta})]^{1 / 2}} \\ \mathbf{Y} \text {-axis } \end{gathered}$
1	13.8	3.72	63.27	10.3	3.22
2	11.1	3.34	56.78	7.7	2.78
3	9.0	3.01	51.17	6.2	2.50
4	6.0	2.45	41.86	3.8	1.95
5	3.8	1.95	33.39	2.4	1.55
Set Point Calculation					
From the TSP Field Calibration Curve, take Qstd $=43$ CFM From the Regression Equation, the " Y " value according to $\text { mw } \times \text { Qstd }+\mathrm{bw}=[\Delta \mathrm{W} \times(\mathrm{Pa} / 760) \times(298 / \mathrm{Ta})]^{1 / 2}$ Therefore, Set Point; $\mathrm{W}=(\mathrm{mwx} \text { Qstd }+\mathrm{bw})^{2} \mathrm{x}(760 / \mathrm{Pa}) \times(\mathrm{Ta} / 298)=$					

Remarks:

Conducted by: | Wong Shing Kwai |
| :---: |
| Checked by: \quad Henry Leung |
| Signature: |

High-Volume TSP Sampler

5-POINT CALIBRATION DATA SHEET

File No. MA20003/44/0015
Project No. KTD1 - Centre of Excellence in Paediatrics (Children's Hospital)
Date: $\quad 10-\mathrm{Nov}-22$

Next Due Date:	10-Jan-23	Operator:	SK
Model No.:	TE-5170		
	Serial No.	1316	

Ambient Condition				
Temperature, $\mathrm{Ta}(\mathrm{K})$	297.8	Pressure, $\mathrm{Pa}(\mathrm{mmHg})$	762.6	

Orifice Transfer Standard Information					
Serial No.	3864	Slope, mc	0.05922	Intercept, bc	-0.02420
Last Calibration Date:	31-Jan-22	$\begin{aligned} & \mathrm{mc} \times \text { Qstd }+\mathrm{bc}=[\Delta \mathrm{H} \times(\mathrm{Pa} / 760) \times(298 / \mathrm{Ta})]^{1 / 2} \\ & \text { Qstd }=\left\{[\Delta \mathrm{H} \times(\mathrm{Pa} / 760) \times(298 / \mathrm{Ta})]^{1 / 2}-\mathrm{bc}\right\} / \mathrm{mc} \end{aligned}$			
Next Calibration Date:	31-Jan-23				

Remarks:

Ambient Condition			
Temperature, $\mathrm{Ta}(\mathrm{K})$	297.8	Pressure, $\mathrm{Pa}(\mathrm{mmHg})$	762.6

Orifice Transfer Standard Information					
Serial No.	3864	Slope, mc	0.05922	Intercept, bc	-0.02420
Last Calibration Date:	31-Jan-22	$\begin{aligned} & \text { mc } \times \text { Qstd }+ \text { bc }=[\Delta \mathrm{H} \times(\mathrm{Pa} / 760) \times(298 / \mathrm{Ta})]^{1 / 2} \\ & \text { Qstd }=\left\{[\Delta \mathrm{H} \times(\mathrm{Pa} / 760) \times(298 / \mathrm{Ta})]^{1 / 2}-\mathrm{bc}\right\} / \mathrm{mc} \end{aligned}$			
Next Calibration Date:	31-Jan-23				

Calibration of TSP Sampler					
Calibration Point	Orfice			HVS	
	$\Delta \mathrm{H}$ (orifice), in. of water	$[\Delta \mathrm{H} \mathrm{x}(\mathrm{Pa} / 760) \times(298 / \mathrm{Ta})]^{1 / 2}$	$\begin{gathered} \hline \text { Qstd (CFM) } \\ \mathbf{X} \text { - axis } \end{gathered}$	$\Delta \mathrm{W}(\mathrm{HVS}), \mathrm{in} .$ of water	$\begin{gathered} {[\Delta \mathrm{W} \times(\mathrm{Pa} / 760) \times(298 / \mathrm{Ta})]^{1 / 2}} \\ \text { Y-axis } \end{gathered}$
1	13.8	3.72	63.27	10.7	3.28
2	11.0	3.32	56.53	9.0	3.01
3	9.1	3.02	51.45	6.7	2.59
4	6.6	2.57	43.88	4.8	2.20
5	3.8	1.95	33.39	2.6	1.62
$\begin{array}{\|lll} \text { By Linear Regression of Y on X } \\ \text { Slope }, \boldsymbol{m w}=\frac{\mathbf{0 . 0 5 6 9}}{} & \text { Intercept, bw : } \\ \quad \begin{array}{l} \text { Correlation coefficient } * \end{array} \\ \text { *If Correlation Coefficient }<0.990 \text {, check and recalibrate. } \end{array}$					
Set Point Calculation					
From the TSP F From the Regre Therefore,	d Calibration on Equation, Point; W =	ve, take Qstd $=43$ CFM Y" value according to $\begin{array}{r} \text { mw x Qstd + bw }=[\mathbf{\Delta W} \\ \mathrm{Qstd}+\mathrm{bw})^{2} \times(760 / \mathrm{Pa}) \times(\end{array}$	$\begin{aligned} & (\mathbf{P a} / 760) \times(\mathbf{2} \\ & (a / 298)= \end{aligned}$	$8 / \mathrm{Ta})]^{1 / 2}$	

Remarks:

Conducted by: | Wong Shing Kwai |
| :---: |
| Henry Leung |
| Checked by: \quad Signature: |

RECALIBRATION
DUE DATE:
January 31, 2023

Calibration Certification Information				
Cal. Date: January 31, 2022	Rootsmeter S/N: 438320	Ta: 294	${ }^{\circ} \mathrm{K}$	
Operator: Jim Tisch		Pa: 752.6	mm Hg	
Calibration Model \#:	TE-5025A	Calibrator S/N: 3864		

Run	Vol. Init $(\mathrm{m} 3)$	Vol. Final $(\mathrm{m} 3)$	Δ Vol. $(\mathrm{m} 3)$	$\Delta T i m e$ $(\mathrm{~min})$	ΔP $(\mathrm{~mm} \mathrm{Hg})$	ΔH (in H2O)
1	1	2	1	1.4490	3.2	2.00
2	3	4	1	1.0320	6.4	4.00
3	5	6	1	0.9160	7.9	5.00
4	7	8	1	0.8730	8.8	5.50
5	9	10	1	0.7230	12.7	8.00

Data Tabulation					
$\begin{aligned} & \text { Vstd } \\ & \text { (m3) } \end{aligned}$	$\begin{gathered} \text { Qstd } \\ \text { (x-axis) } \end{gathered}$	$\begin{gathered} \sqrt{\Delta H\left(\frac{P a}{P s t d}\right)\left(\frac{T s t d}{T a}\right)} \\ (y \text {-axis) } \end{gathered}$	Va	$\begin{gathered} \text { Qa } \\ (x \text {-axis) } \end{gathered}$	$\begin{gathered} \sqrt{\Delta H(\mathrm{Ta} / \mathrm{Pa})} \\ (y \text {-axis) } \end{gathered}$
0.9995	0.6898	1.4169	0.9957	0.6872	0.8839
0.9952	0.9643	2.0037	0.9915	0.9608	1.2500
0.9932	1.0843	2.2402	0.9895	1.0802	1.3976
0.9920	1.1363	2.3496	0.9883	1.1321	1.4658
0.9868	1.3649	2.8337	0.9831	1.3598	1.7678
QSTD	m=	2.09281	QA	$\mathrm{m}=$	1.31048
	$\mathrm{b}=$	-0.02426		$\mathrm{b}=$	-0.01514
	r=	0.99993		r=	0.99993

Calculations	
Vstd= V $^{\text {Vol }}((\mathrm{Pa}-\Delta \mathrm{P}) / \mathrm{Pstd})(\mathrm{Tstd} / \mathrm{Ta})$	$\mathrm{Va}=\Delta \mathrm{Vol}((\mathrm{Pa}-\Delta \mathrm{P}) / \mathrm{Pa})$
Qstd $=$ Vstd/ $/ \Delta$ Time	$\mathbf{Q}=$ = Va/ Δ Time
For subsequent flow rate calculations:	
Qstd $\left.=1 / m\left(\left(\sqrt{\Delta H\left(\frac{P_{\text {a }}}{P_{s t d}}\right)\left(\frac{\text { Tstd }}{T a}\right.}\right)\right)-\mathrm{b}\right)$	$Q a=1 / m((\sqrt{\Delta H(T a / P a)})-b)$

Standard Conditions	
Tstd:	$298.15{ }^{\circ} \mathrm{K}$
Pstd:	760 mm Hg
Key	
$\Delta \mathrm{H}$: calibrator manometer reading (in $\mathrm{H2O})$	
$\Delta \mathrm{P}:$ rootsmeter manometer reading $(\mathrm{mm} \mathrm{Hg})$	
Ta: actual absolute temperature $\left({ }^{\circ} \mathrm{K}\right)$	
Pa: actual barometric pressure $(\mathrm{mm} \mathrm{Hg})$	
b: intercept	
m : slope	

RECALIBRATION
US EPA recommends annual recalibration per 1998
40 Code of Federal Regulations Part 50 to 51,
Appendix B to Part 50, Reference Method for the
Determination of Suspended Particulate Matter in
the Atmosphere, 9.2.17, page 30

Certificate of Calibration - Wind Monitoring Station

Description:	$\underline{\text { Yau Lai Estate, Bik Lai House }}$
Manufacturer:	$\underline{\text { Davis Instruments }}$
Model No.:	$\underline{\text { Davis7440 }}$
Serial No.:	$\underline{\text { MC01010A44 }}$
Equipment No.:	$\underline{\text { SA-03-04 }}$
Date of Calibration	$\underline{\text { 19-Aug-2022 }}$
Next Due Date	$\underline{\text { 19-Feb-2023 }}$

1. Performance check of Wind Speed

Wind Speed, m/s		Difference D (m/s)
Wind Speed Reading (V1)	Anemometer Value (V2)	$\mathrm{D}=\mathrm{V} 1-\mathrm{V} 2$
0.0	0.0	0.0
1.5	1.5	0.0
2.5	2.6	-0.1
4.0	4.0	0.0

2. Performance check of Wind Direction

Wind Direction $\left({ }^{\circ}\right)$		Difference D (${ }^{\circ}$)
Wind Direction Reading $(\mathrm{W} 1)$	Marine Compass Value (W2)	$\mathrm{D}=\mathrm{W} 1-\mathrm{W} 2$
0	0	0.0
90	90	0.0
180	180	0.0
270	270	0.0

Test Specification:

1. Performance Wind Speed Test - The wind meter was on-site calibrated against the anemometer
2. Performance Wind Direction Test - The wind meter was on-site calibrated against the marine compass at four direction

Calibrated by:
 Approved by:

