

TISCH ENVIRONMENTAL, INC. 145 SOUTH MIAMI AVE VILLAGE OF CLEVES, OH 45002 513.467.9000 877.263.7610 TOLL FREE 513.467.9009 FAX

ORIFICE TRANSFER STANDARD CERTIFICATION WORKSHEET TE-5025A

Date - Ja Operator		7 Rootsmeter Orifice I.I		438320 2154	Ta (K) - Pa (mm) -	294 - 755.65
	=======		=======	=======	METER	ORFICE
PLATE OR Run #	VOLUME START (m3)	VOLUME STOP (m3)	DIFF VOLUME (m3)	DIFF TIME (min)	DIFF Hg (mm)	DIFF H2O (in.)
1 2 3 4 5	NA NA NA NA	NA NA NA NA	1.00 1.00 1.00 1.00 1.00	1.4530 1.0420 0.9290 0.8840 0.7300	3.2 6.4 7.9 8.8 12.8	2.00 4.00 5.00 5.50 8.00

DATA TABULATION

Vstd	(x axis) Qstd	(y axis)		Va	(x axis) Qa	(y axis)
1.0035 0.9993 0.9972 0.9960 0.9907	0.6906 0.9590 1.0734 1.1268 1.3571	1.4197 2.0078 2.2448 2.3543 2.8394		0.9957 0.9915 0.9894 0.9883 0.9830	0.6853 0.9516 1.0651 1.1180 1.3466	0.8821 1.2475 1.3948 1.4628 1.7642
Qstd slop intercep coefficie	t (b) =	2.12779 -0.04273 0.99982	n e n	Qa slope intercept coefficie	= (b) $=$	1.33238 -0.02655 0.99982
y axis =	SQRT [H20 (I	Pa/760)(298/T	a)]	y axis =	SQRT [H20 (Ta/Pa)]

CALCULATIONS

Vstd = Diff. Vol[(Pa-Diff. Hg)/760](298/Ta)
Qstd = Vstd/Time

Va = Diff Vol [(Pa-Diff Hg)/Pa]

Qa = Va/Time

For subsequent flow rate calculations:

Qstd = $1/m\{[SQRT(H2O(Pa/760)(298/Ta))] - b\}$ Qa = $1/m\{[SQRT H2O(Ta/Pa)] - b\}$

MATERIALAB CONSULTANTS LIMITED

Room 723 & 725, 7/F, Block B,

Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong,

Hong Kong.

: (852)-24508238 Fax : (852)-24508032 Email : mcl@fugro.com.hk

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Project: Environmantal Monitoring Works For Contract No. KLN/2015/07

Date of Calibration: 4-Jan-18

Location: KER1b

Next Calibration Date: 3-Apr-18

Brand:

Tisch

Model:

TE-5170

3482

Technician: Toby Wan

CONDITIONS

Sea Level Pressure (hPa):

1016.7

Corrected Pressure (mm Hg):

763

Temperature (°C):

19

Temperature (K):

292

CALIBRATION ORIFICE

CALIBRATIONS

Make:

Tisch

S/N:

Qstd Slope:

2.12779

Model:

TE-5025A

Qstd Intercept:

-0.04273

Calibration Date: S/N:

18-Jan-17

Expiry Date:

2154

18-Jan-18

Dieta No	H2O (L)	H2O (R)	H2O	Qstd	Ī
Plate No.	(in)	(in)	/:m\	(m³/min)	/

Plate No	H2O (L)	H2O (R)	H2O	Qstd	1	IC		LINEAR	8
i idio ivo.	(in)	(in)	(in)	(m³/min)	(chart)	(corrected)	R	EGRESSION	
18	4.80	-8.10	12.900	1.729	57.00	57.70	Slope =	27.0898	
13	3.70	-6.60	10.300	1.547	50.00	50.61	Intercept =	9.7861	
10	2.50	-5.00	7.500	1.323	45.00	45.55	Corr. coeff.=	0.9954	
7	0.90	-4.10	5.000	1.084	38.00	38.46			
5	0.00	-3.00	3.000	0.844	33.00	33.40			
	13 10 7	(in) 18 4.80 13 3.70 10 2.50 7 0.90	Plate No. (in) (in) 18 4.80 -8.10 13 3.70 -6.60 10 2.50 -5.00 7 0.90 -4.10	Plate No. (in) (in) (in) 18 4.80 -8.10 12.900 13 3.70 -6.60 10.300 10 2.50 -5.00 7.500 7 0.90 -4.10 5.000	Plate No. (in) (in) (in) (in) (m³/min) 18 4.80 -8.10 12.900 1.729 13 3.70 -6.60 10.300 1.547 10 2.50 -5.00 7.500 1.323 7 0.90 -4.10 5.000 1.084	Plate No. (in) (in) (in) (m³/min) (chart) 18 4.80 -8.10 12.900 1.729 57.00 13 3.70 -6.60 10.300 1.547 50.00 10 2.50 -5.00 7.500 1.323 45.00 7 0.90 -4.10 5.000 1.084 38.00	Plate No. (in) (in) (in) (m³/min) (chart) (corrected) 18 4.80 -8.10 12.900 1.729 57.00 57.70 13 3.70 -6.60 10.300 1.547 50.00 50.61 10 2.50 -5.00 7.500 1.323 45.00 45.55 7 0.90 -4.10 5.000 1.084 38.00 38.46	Plate No. (in) (in) (in) (m³/min) (chart) (corrected) R 18 4.80 -8.10 12.900 1.729 57.00 57.70 Slope = 13 3.70 -6.60 10.300 1.547 50.00 50.61 Intercept = 10 2.50 -5.00 7.500 1.323 45.00 45.55 Corr. coeff.: 7 0.90 -4.10 5.000 1.084 38.00 38.46	Plate No. (in) (in) (in) (in) (m³/min) (chart) (corrected) REGRESSION 18 4.80 -8.10 12.900 1.729 57.00 57.70 Slope = 27.0898 13 3.70 -6.60 10.300 1.547 50.00 50.61 Intercept = 9.7861 10 2.50 -5.00 7.500 1.323 45.00 45.55 Corr. coeff.: 0.9954 7 0.90 -4.10 5.000 1.084 38.00 38.46

Calculations:

Qstd = 1/m[Sqrt(H2O(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart response

I = actual chart response

m = calibrator Qstd slope

b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pa = actual pressure during calibration (mm Hg)

Tstd = 298 deg K

Pstd = 760 mm Hg

For subsequent calculation of sampler flow:

1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)

m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

Pav = daily average pressure

FLOW RATE CHART 70.00 60.00 50.00 Actual Chart Response (IC) 40.00 30.00 20.00 10.00 0.00 0.000 0.500 1.000 1.500 2.000 Standard Flow Rate (m3/min)

CHOI KAM HO Project Consultant Report Date: 4th January, 2018

MATERIALAB CONSULTANTS LIMITED

Room 723 & 725, 7/F, Block B, Profit Industrial Building,

1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong.

Fax : (852)-24508032 : mcl@fugro.com.hk Email

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Project: Environmantal Monitoring Works For Contract No. KLN/2015/07

Date of Calibration: 4-Jan-18

Location: KTD1a

Next Calibration Date: 3-Apr-18

Brand:

Tisch

Model:

TE-5170

S/N: 4037 Technician: Toby Wan

CONDITIONS

Sea Level Pressure (hPa):

1016.7

Corrected Pressure (mm Hg):

763

Temperature (°C):

19

Temperature (K):

292

CALIBRATION ORIFICE

Make:

Tisch

Qstd Slope:

2.12779

Model:

TE-5025A 18-Jan-17 **Qstd Intercept:**

-0.04273

Calibration Date:

2154

Expiry Date:

18-Jan-18

S/N:

CALIBRATIONS

	CALIBRATIONS									
Plate No.	H2O (L)	H2O (R)	H2O	Qstd		IC		LINEAR		
Tiate ivo.	(in)	(in)	(in)	(m³/min)	(chart)	(corrected)	F	REGRESSION		
18	4.90	-8.00	12.900	1.729	52.00	52.64	Slope =	25.5019		
13	3.60	-6.70	10.300	1.547	47.00	47.57	Intercept =	8.2352		
10	2.40	-5.20	7.600	1.332	41.00	41.50	Corr. coeff.:	0.9985		
7	1.00	-4.00	5.000	1.084	36.00	36.44				
5	0.10	-3.10	3.200	0.871	30.00	30.37				

Calculations:

Qstd = 1/m[Sqrt(H2O(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart response

I = actual chart response

m = calibrator Qstd slope

b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pa = actual pressure during calibration (mm Hg)

Tstd = 298 deg K

Pstd = 760 mm Hg

For subsequent calculation of sampler flow:

1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)

m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

Pav = daily average pressure

FLOW RATE CHART 60.00 50.00 Actual Chart Response (IC) 40.00 30.00 20.00 10.00 0.00 0.000 0.500 1.000 1.500 2.000 Standard Flow Rate (m3/min)

CHOI KAM HO Project Consultant

Report Date: 4th January, 2018

MATERIALAB CONSULTANTS LIMITED

Room 723 & 725, 7/F, Block B,

Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong,

Hong Kong.

Tel (852)-24508238 Fax (852)-24508032 Email : mcl@fugro.com.hk

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Project: Environmantal Monitoring Works For Contract No. KLN/2015/07

Date of Calibration: 4-Jan-18

Location: KTD2a

Next Calibration Date: 3-Apr-18

Brand:

Tisch

Technician: Toby Wan

Model:

TE-5170

S/N:

3838

CONDITIONS

Sea Level Pressure (hPa):

1016.7

Corrected Pressure (mm Hg):

763

Temperature (°C):

19

Temperature (K):

292

CALIBRATION ORIFICE

Make:

Tisch

Qstd Slope:

2.12779

Model:

TE-5025A

Qstd Intercept:

-0.04273

Calibration Date:

18-Jan-17

Expiry Date:

18-Jan-18

S/N: 2154

CALI	BRAT	IONS
------	------	------

	CALIBRATIONS										
Plate No	H2O (L)	H2O (R)	H2O	Qstd	1	IC		LINEAR			
1 late 140	(in)	(in)	(in)	(m³/min)	(chart)	(corrected)	F	REGRESSION			
18	5.50	-5.10	10.600	1.569	53.00	53.65	Slope =	34.0537			
13	4.50	-3.90	8.400	1.399	47.00	47.57	Intercept =	0.2281			
10	3.30	-2.70	6.000	1.185	41.00	41.50	Corr. coeff.:	0.9981			
7	2.40	-1.60	4.000	0.972	32.00	32.39					
5	1.40	-1.00	2.400	0.757	26.00	26.32					

Calculations:

Qstd = 1/m[Sqrt(H2O(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart response

I = actual chart response

m = calibrator Qstd slope

b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pa = actual pressure during calibration (mm Hg)

Tstd = 298 deg K

Pstd = 760 mm Hg

For subsequent calculation of sampler flow:

1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)

m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

Pav = daily average pressure

FLOW RATE CHART 60.00 50.00 Actual Chart Response (IC) 40.00 30.00 20.00 10.00 0.00 0.000 0.500 1.000 1.500 2.000 Standard Flow Rate (m3/min)

CHOI KAM HO Project Consultant

Report Date: 4th January, 2018

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report no.: 172379CA171674

Page 1 of 1

CALIBRATION CERTIFICATE OF SOUND LEVEL METER

Client Supplied Information

Client: MateriaLab Consultants Ltd.

Address: Room 723 & 725, 7F., Block B Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Chung, N.T.

Project : Calibration Services
Details of Unit Under Test, UUT

Description

Sound Level Meter

Manufacturer

Casella

Model No.

Casella (Model no. CEL-63X(meter), CEL-251(microphone), CEL-495(Preamplifier))

Serial No.

1057034 (meter), 01308 (microphone), 002672 (Preamplifier))

Next Calibration Date

30-Jul-2018

Specification Limit

EN 61672: 2003 Type 1

Laboratory Information

Description

B & K Acoustic Multifunction Calibrator 4226 (Traditional free field setting)

Equipment ID. : R-108-1

Date of Calibration:

31-Jul-2017

Ambient Temperature: 22

2 °C

Calibration Location:

Calibration Laboratory of MateriaLab

Method Used

By direct comparison

Calibration Results:

Parameters		Mean Value (dB)	Specific	cation	Limit(dB)
	4000Hz	2.5	2.6	to	-0.6
	2000Hz	0.5	2.8	to	-0.4
	1000Hz	-1.0	1.1	to	-1.1
A-weighing frequency	500Hz	-4.5	-1.8	to	-4.6
response	250Hz	-10.0	-7.2	to	-10.0
	125Hz	-17.4	-14.6	to	-17.6
	63Hz	-27.3	-24.7	to	-27.7
	31.5Hz	-40.0	-37.4	to	-41.4
Differential level	94dB-104dB	0.0		± 0.6	
linearity	104dB-114dB	0.0		± 0.6	

Remarks:

- 1. The equipment used in this calibration is traceable to recognized National Standards.
- 2. The mean value is the average of four measurements.
- 3. For calibration: Reference SPL are 94, 104 & 114dB, range setting is 20-140dB & time weighing is fast
- 4. The equipment complies with EN 61672: 2003 Type 1 sound level meter for the above measurement.

Date: 2-8- 2017

Certified by

_ Date : ₂

Kwok Chi Wa (Assistant Manager)

1-8-2017

** End of Report **

Certificate of Conformity and Calibration

Instrument Model:-

CEL-633A

Serial Number

0873599 V006-01

Microphone Type:-

Serial Number

CEL-251

<u>Preamplifier Type:-</u> Serial Number CEL-495 003318

1910

Instrument Class/Type:-

1

Applicable standards:-

IEC 61672: 2002 / EN 60651 (Electroacoustics - Sound Level Meters)
IEC 60651 1979 (Sound Level Meters), ANSI S1.4: 1983 (Specifications For Sound Level Meters)

Note:- The test sequences performed in this report are in accordance with the current Sound level meter Standard - IEC61672. The combination of tests performed are considered to confirm the products electro-acoustic performance to all applicable standards including superceeded Sound Level Meter Standards - IEC60651 and IEC60804.

Test Conditions:-

20 °C 50 %RH 1011 mBar

Test Engineer:-

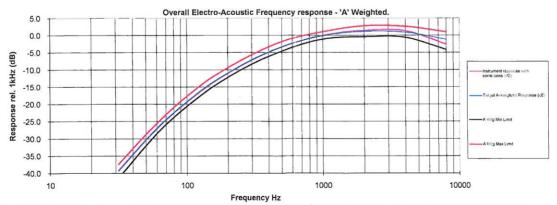
Nicola Cartwright

Date of Issue:-

April 5, 2017

Declaration of conformity:-

This test certificate confirms that the instrument specified above has been successfully tested to comply with the manufacturer's published specifications. Tests are performed using equipment traceable to national standards in accordance with Casella's ISO 9001:2008 quality procedures. This product is certified as being compliant to the requirements of the CE Directive.


Test Summary:-

All Tests Pass Self Generated Noise Test Electrical Signal Test Of Frequency Weightings **All Tests Pass** Frequency & Time Weightings At 1 kHz **All Tests Pass** Level Linearity On The Reference Level Range **All Tests Pass** Toneburst Response Test All Tests Pass All Tests Pass C-peak Sound Levels **All Tests Pass** Overload Indication **All Tests Pass** Acoustic Tests

Combined Electro-Acoustic Frequency Response - A Weighted

Combined Electro-Acoustic Frequency Response - A Weighted (IEC 61672-3:2006)

The following A-Weighted frequency response graph shows this instruments overall frequency response based upon the application of multi-frequency pressure field calibrations. The microphones Pressure to Free field correction coefficients are applied to pressure response. Reference level taken at 1kHz.

Casella UK

Regent House, Wolseley Road, Kempston, Bedford MK42 7JY United Kingdom

Tel: +44 (0) 1234 844100 Fax: +44(0) 1234 841490 E-mail: info@casellasolutions.com

Casella USA

415 Lawrence Bell Drive, Unit 4 Buffalo, NY 14221, USA Toll Free (800) 366-2966

Toll Free (800) 366-2966 Tel: +1 (710) 276 3040 E-mail: info@casellausa.com

Casella India

Ideal Industries India Pvt Ltd. 229-230, Spazedge, Tower -B Sohna Road, Sector-47, Gurgaon-122001, Haryana , India.

Tel: +91 124 4495100 E-mail: casella.e ales@ideal-industries.in

Casella China

Ideal Industries China Room 305, Building 1, No 1279, Chuanqiao Rd, Pudong New District, Shanghai, China

Tel. +86-21-31263188 Fax: +86-21-610-5906 Email: info@casellasolutions.cn

Casella Australia

Ideal Industries (Aust) PTY. LTD Unit 17, 35 Dunlop Rd, Mulgrave Vic. 3170, Australia.

Email: australia@casellasolutions.com

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report no.: 172379CA172109

Page 1 of 1

CALIBRATION CERTIFICATE OF SOUND LEVEL METER

Client Supplied Information

Client: MateriaLab Consultants Ltd.

Address: Room 723 & 725, 7/F., Block B Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Chung, N.T.

Project : Calibration Services
Details of Unit Under Test, UUT

Description

Sound Level Meter

Manufacturer

Casella

Model No. Serial No.
 Meter
 Microphone
 Preamplifier

 CL63X
 CE-251
 CEL-495

 4637931
 01993
 003538

Equipment ID

N-13

Next Calibration Date

17-Sep-2018

Specification Limit

EN 61672: 2003 Type 1

Laboratory Information

Description

B & K Acoustic Multifunction Calibrator 4226 (Traditional free field setting)

Equipment ID. :

R-108-1

Date of Calibration:

18-Sep-2017

Ambient Temperature: 22

2°C

Calibration Location:

Calibration Laboratory of MateriaLab

Method Used

By direct comparison

Calibration Results:

Parame	ters	Mean Value (dB)	Specific	ation	Limit(dB)
	4000Hz	1.4	2.6	to	-0.6
	2000Hz	1.3	2.8	to	-0.4
A-weighing	1000Hz	0.0	1.1	to	-1.1
frequency	500Hz	-3.2	-1.8	to	-4.6
	250Hz	-8.8	-7.2	to	-10.0
response	125Hz	-16.3	-14.6	to	-17.6
	63Hz	-26.3	-24.7	to	-27.7
	31.5Hz	-39.3	-37.4	to	-41.4
Differential level	94dB-104dB	0.0		± 0.6	
linearity	104dB-114dB	0.0		± 0.6	

Remarks:

- 1. The equipment used in this calibration is traceable to recognized National Standards.
- 2. The mean value is the average of four measurements.
- 3. For calibration: Reference range is 30-130dB, reference SPL is 94,104 & 114dB, frequency weighing is A,
- 4. The equipment does comply with EN 61672: 2003 Type 1 sound level meter for the above measurement.

Checked by:

N

Date: 19-9- 201

Certified by

_ _ _ _

Chan Chun Wai (Manager)

CA-R-297 (22/07/2009)

** Fnd of Donord **

The copyright of this document is owned by Fugro Technical Services Limited. It may not be reproduced except with prior written approval from the Company.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun. N.T.. Hong Kong.

: +852 2450 8233 Fax : +852 2450 6138 E-mail: matlab@fugro.com Website: www.fugro.com

Report no.: 172379CA171674(1)

Page 1 of 1

CALIBRATION CERTIFICATE OF SOUND CALIBRATOR

Client Supplied Information

Client: MateriaLab Consultants Ltd.

Address: Room 723 & 725, 7F., Block B Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Chung, N.T.

Project: Calibration Services

Details of Unit Under Test, UUT

Description

Sound Calibrator

Manufacturer

Caselia (Model no. CEL-120/1)

Serial No.

0255083

Next Calibration Date

30-Jul-2018

Specification Limit

±0.5dB

Laboratory Information

Description

Reference Sound Level Meter

Equipment ID. :

R-119-1

Date of Calibration:

31-Jul-2017

Ambient Temperature: 21 °C

Calibration Location:

Calibration Laboratory of MateriaLab

Method Used

By direct comparison

Calibration Results:

Parameters (Setting of UUT)	Mean Value (error of measurement)	Specification Limit (dB)	
94dB	0.1 dB	10.540	
114dB	0.1 dB	±0.5dB	

Remarks:

- 1. The equipment used in this calibration is traceable to recognized National Standards.
- 2. The mean value is the average of four measurements.
- 3. The equipment does comply with the specification limit.

Date: 4-8-2017

CA-R-297 (22/07/2009)

Kwok Chi Wa (Assistant Manager)

** End of Report **

Certificate of Conformance and Calibration for

Conformance and Calibration for						
CEL-120 Acou	ıstic Calibrator					
Applicable Standards : JEC (50942: 2003 & ANSI S1.40: 2006					
CEL-120/1 Class 1						
CEL-120/2 Class 2						
Serial No:	26					
Firmware: 04						
Temperature: 228°C Pro	essure: 010. 8 _{mb %RH} 51.8					
400177						
Frequency = 1.00 kHz ± 2 Hz T.H.D. = $< 1\%$	Calibration Level					
SPL @ 114.0dB Setting	114.01 dB					
SPL @ 94.0dB Setting (CEL-120/1 only)	93.96 dB/N.A					
Engineer:	1 4 JUN 2017					
Company test equipment and acoustic workin subject to periodic calibration, traceable to U company's ISO90	g standards, used for conformance testing, are IK national standards, in accordance with the II Quality System.					
DECLARATION C is certificate confirms that the instrument specified the manufacturer's published specifications and t	above has been produced and tested to comply with					
Casella CE Regent House, Wolseley Road, I Phone: +44 (0) 1234 844100 E-mail: info@	Kempston, Bedford. MK42 7JY Fax: +44 (0) 1234 841490 casellacel.com					
Web: www.casellar	neasurement.com 198032A-01					

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Fax : +852 2450 6138

E-mail: matlab@fugro.com Website: www.fugro.com

Report No.: 161966CA171055

Page 1 of 1

CALIBRATION CERTIFICATE OF ANEMOMETER

Client Supplied Information

Client: MateriaLab Consultants Ltd.

Project: Calibration Services

Details of Unit Under Test, UUT

Description

Anemometer

Manufacturer:

Benetech

Model No.

GM816

Serial No.

13372555

Equipment ID.:

N/A

Next Calibration Date:

09-May-2018

Laboratory Information

Details of Reference Equipment -

Description

Reference Anemometer

Equipment ID.:

R-101-4

Date of Calibration

10-May-2017

Ambient Temperature

22 °C

Calibration Location

Calibration Laboratory of MateriaLab

Method Used : By direct Comparison

Calibration Results:

Reference Reading	UUT Reading	Error
(m/s)	(m/s)	(m/s)
2.00	2.0	0.0
3.98	3.9	-0.1
5.98	5.4	-0.6
8.01	7.0	-1.0
10.01	8.8	-1.2

Remark:

1. The equipment being used in this calibration is traceable to recognized National Standards.

Date: 12-5-2017 Certified by:

Chan Chun Wai (Manager)

** End of Report **