TISCH ENVIRONMENTAL, INC. 145 SOUTH MIAMI AVE VILLAGE OF CLEVES, OH 45002 513.467.9000 877.263.7610 TOLL FREE 513.467.9009 FAX #### ORIFICE TRANSFER STANDARD CERTIFICATION WORKSHEET TE-5025A | Date - Ja
Operator | | 7 Rootsmeter
Orifice I.I | | 438320
2154 | Ta (K) -
Pa (mm) - | 294
- 755.65 | |-----------------------|-------------------------|-----------------------------|--------------------------------------|--|----------------------------------|--------------------------------------| | | ======= | | ======= | ======= | METER | ORFICE | | PLATE
OR
Run # | VOLUME
START
(m3) | VOLUME
STOP
(m3) | DIFF
VOLUME
(m3) | DIFF
TIME
(min) | DIFF
Hg
(mm) | DIFF
H2O
(in.) | | 1
2
3
4
5 | NA
NA
NA
NA | NA
NA
NA
NA | 1.00
1.00
1.00
1.00
1.00 | 1.4530
1.0420
0.9290
0.8840
0.7300 | 3.2
6.4
7.9
8.8
12.8 | 2.00
4.00
5.00
5.50
8.00 | ### DATA TABULATION | Vstd | (x axis)
Qstd | (y axis) | | Va | (x axis)
Qa | (y axis) | |--|--|--|-------|--|--|--| | 1.0035
0.9993
0.9972
0.9960
0.9907 | 0.6906
0.9590
1.0734
1.1268
1.3571 | 1.4197
2.0078
2.2448
2.3543
2.8394 | | 0.9957
0.9915
0.9894
0.9883
0.9830 | 0.6853
0.9516
1.0651
1.1180
1.3466 | 0.8821
1.2475
1.3948
1.4628
1.7642 | | Qstd slop
intercep
coefficie | t (b) = | 2.12779
-0.04273
0.99982 | n e n | Qa slope
intercept
coefficie | = (b) $=$ | 1.33238
-0.02655
0.99982 | | y axis = | SQRT [H20 (I | Pa/760)(298/T | a)] | y axis = | SQRT [H20 (| Ta/Pa)] | ## CALCULATIONS Vstd = Diff. Vol[(Pa-Diff. Hg)/760](298/Ta) Qstd = Vstd/Time Va = Diff Vol [(Pa-Diff Hg)/Pa] Qa = Va/Time For subsequent flow rate calculations: Qstd = $1/m\{[SQRT(H2O(Pa/760)(298/Ta))] - b\}$ Qa = $1/m\{[SQRT H2O(Ta/Pa)] - b\}$ ### **MATERIALAB CONSULTANTS LIMITED** Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong. : (852)-24508238 Fax : (852)-24508032 Email : mcl@fugro.com.hk #### TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET Project: Environmantal Monitoring Works For Contract No. KLN/2015/07 Date of Calibration: 4-Jan-18 Location: KER1b Next Calibration Date: 3-Apr-18 Brand: Tisch Model: TE-5170 3482 Technician: Toby Wan CONDITIONS Sea Level Pressure (hPa): 1016.7 Corrected Pressure (mm Hg): 763 Temperature (°C): 19 Temperature (K): 292 **CALIBRATION ORIFICE** **CALIBRATIONS** Make: Tisch S/N: Qstd Slope: 2.12779 Model: TE-5025A **Qstd Intercept:** -0.04273 Calibration Date: S/N: 18-Jan-17 Expiry Date: 2154 18-Jan-18 | Dieta No | H2O (L) | H2O (R) | H2O | Qstd | Ī | |-----------|---------|---------|------|----------|---| | Plate No. | (in) | (in) | /:m\ | (m³/min) | / | | Plate No | H2O (L) | H2O (R) | H2O | Qstd | 1 | IC | | LINEAR | 8 | |-------------|---------------|--------------------------------------|--|---|---|--|--|--|--| | i idio ivo. | (in) | (in) | (in) | (m³/min) | (chart) | (corrected) | R | EGRESSION | | | 18 | 4.80 | -8.10 | 12.900 | 1.729 | 57.00 | 57.70 | Slope = | 27.0898 | | | 13 | 3.70 | -6.60 | 10.300 | 1.547 | 50.00 | 50.61 | Intercept = | 9.7861 | | | 10 | 2.50 | -5.00 | 7.500 | 1.323 | 45.00 | 45.55 | Corr. coeff.= | 0.9954 | | | 7 | 0.90 | -4.10 | 5.000 | 1.084 | 38.00 | 38.46 | | | | | 5 | 0.00 | -3.00 | 3.000 | 0.844 | 33.00 | 33.40 | | | | | | 13
10
7 | (in) 18 4.80 13 3.70 10 2.50 7 0.90 | Plate No. (in) (in) 18 4.80 -8.10 13 3.70 -6.60 10 2.50 -5.00 7 0.90 -4.10 | Plate No. (in) (in) (in) 18 4.80 -8.10 12.900 13 3.70 -6.60 10.300 10 2.50 -5.00 7.500 7 0.90 -4.10 5.000 | Plate No. (in) (in) (in) (in) (m³/min) 18 4.80 -8.10 12.900 1.729 13 3.70 -6.60 10.300 1.547 10 2.50 -5.00 7.500 1.323 7 0.90 -4.10 5.000 1.084 | Plate No. (in) (in) (in) (m³/min) (chart) 18 4.80 -8.10 12.900 1.729 57.00 13 3.70 -6.60 10.300 1.547 50.00 10 2.50 -5.00 7.500 1.323 45.00 7 0.90 -4.10 5.000 1.084 38.00 | Plate No. (in) (in) (in) (m³/min) (chart) (corrected) 18 4.80 -8.10 12.900 1.729 57.00 57.70 13 3.70 -6.60 10.300 1.547 50.00 50.61 10 2.50 -5.00 7.500 1.323 45.00 45.55 7 0.90 -4.10 5.000 1.084 38.00 38.46 | Plate No. (in) (in) (in) (m³/min) (chart) (corrected) R 18 4.80 -8.10 12.900 1.729 57.00 57.70 Slope = 13 3.70 -6.60 10.300 1.547 50.00 50.61 Intercept = 10 2.50 -5.00 7.500 1.323 45.00 45.55 Corr. coeff.: 7 0.90 -4.10 5.000 1.084 38.00 38.46 | Plate No. (in) (in) (in) (in) (m³/min) (chart) (corrected) REGRESSION 18 4.80 -8.10 12.900 1.729 57.00 57.70 Slope = 27.0898 13 3.70 -6.60 10.300 1.547 50.00 50.61 Intercept = 9.7861 10 2.50 -5.00 7.500 1.323 45.00 45.55 Corr. coeff.: 0.9954 7 0.90 -4.10 5.000 1.084 38.00 38.46 | #### Calculations: Qstd = 1/m[Sqrt(H2O(Pa/Pstd)(Tstd/Ta))-b] IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)] Qstd = standard flow rate IC = corrected chart response I = actual chart response m = calibrator Qstd slope b = calibrator Qstd intercept Ta = actual temperature during calibration (deg K) Pa = actual pressure during calibration (mm Hg) Tstd = 298 deg K Pstd = 760 mm Hg #### For subsequent calculation of sampler flow: 1/m((I)[Sqrt(298/Tav)(Pav/760)]-b) m = sampler slope b = sampler intercept I = chart response Tav = daily average temperature Pav = daily average pressure **FLOW RATE CHART** 70.00 60.00 50.00 Actual Chart Response (IC) 40.00 30.00 20.00 10.00 0.00 0.000 0.500 1.000 1.500 2.000 Standard Flow Rate (m3/min) **CHOI KAM HO Project Consultant** Report Date: 4th January, 2018 #### MATERIALAB CONSULTANTS LIMITED Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong. Fax : (852)-24508032 : mcl@fugro.com.hk Email ## TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET Project: Environmantal Monitoring Works For Contract No. KLN/2015/07 Date of Calibration: 4-Jan-18 Location: KTD1a Next Calibration Date: 3-Apr-18 Brand: Tisch Model: TE-5170 S/N: 4037 Technician: Toby Wan CONDITIONS Sea Level Pressure (hPa): 1016.7 Corrected Pressure (mm Hg): 763 Temperature (°C): 19 Temperature (K): 292 CALIBRATION ORIFICE Make: Tisch **Qstd Slope:** 2.12779 Model: TE-5025A 18-Jan-17 **Qstd Intercept:** -0.04273 Calibration Date: 2154 **Expiry Date:** 18-Jan-18 S/N: CALIBRATIONS | | CALIBRATIONS | | | | | | | | | | |------------|--------------|---------|--------|----------|---------|-------------|---------------|------------|--|--| | Plate No. | H2O (L) | H2O (R) | H2O | Qstd | | IC | | LINEAR | | | | Tiate ivo. | (in) | (in) | (in) | (m³/min) | (chart) | (corrected) | F | REGRESSION | | | | 18 | 4.90 | -8.00 | 12.900 | 1.729 | 52.00 | 52.64 | Slope = | 25.5019 | | | | 13 | 3.60 | -6.70 | 10.300 | 1.547 | 47.00 | 47.57 | Intercept = | 8.2352 | | | | 10 | 2.40 | -5.20 | 7.600 | 1.332 | 41.00 | 41.50 | Corr. coeff.: | 0.9985 | | | | 7 | 1.00 | -4.00 | 5.000 | 1.084 | 36.00 | 36.44 | | | | | | 5 | 0.10 | -3.10 | 3.200 | 0.871 | 30.00 | 30.37 | | | | | #### Calculations: Qstd = 1/m[Sqrt(H2O(Pa/Pstd)(Tstd/Ta))-b] IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)] Qstd = standard flow rate IC = corrected chart response I = actual chart response m = calibrator Qstd slope b = calibrator Qstd intercept Ta = actual temperature during calibration (deg K) Pa = actual pressure during calibration (mm Hg) Tstd = 298 deg K Pstd = 760 mm Hg #### For subsequent calculation of sampler flow: 1/m((I)[Sqrt(298/Tav)(Pav/760)]-b) m = sampler slope b = sampler intercept I = chart response Tav = daily average temperature Pav = daily average pressure **FLOW RATE CHART** 60.00 50.00 Actual Chart Response (IC) 40.00 30.00 20.00 10.00 0.00 0.000 0.500 1.000 1.500 2.000 Standard Flow Rate (m3/min) **CHOI KAM HO Project Consultant** Report Date: 4th January, 2018 ### **MATERIALAB CONSULTANTS LIMITED** Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong. Tel (852)-24508238 Fax (852)-24508032 Email : mcl@fugro.com.hk ## TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET Project: Environmantal Monitoring Works For Contract No. KLN/2015/07 Date of Calibration: 4-Jan-18 Location: KTD2a Next Calibration Date: 3-Apr-18 Brand: Tisch Technician: Toby Wan Model: TE-5170 S/N: 3838 CONDITIONS Sea Level Pressure (hPa): 1016.7 Corrected Pressure (mm Hg): 763 Temperature (°C): 19 Temperature (K): 292 **CALIBRATION ORIFICE** Make: Tisch **Qstd Slope:** 2.12779 Model: TE-5025A **Qstd Intercept:** -0.04273 Calibration Date: 18-Jan-17 Expiry Date: 18-Jan-18 S/N: 2154 | CALI | BRAT | IONS | |------|------|------| |------|------|------| | | CALIBRATIONS | | | | | | | | | | | |------------|--------------|---------|--------|----------|---------|-------------|---------------|------------|--|--|--| | Plate No | H2O (L) | H2O (R) | H2O | Qstd | 1 | IC | | LINEAR | | | | | 1 late 140 | (in) | (in) | (in) | (m³/min) | (chart) | (corrected) | F | REGRESSION | | | | | 18 | 5.50 | -5.10 | 10.600 | 1.569 | 53.00 | 53.65 | Slope = | 34.0537 | | | | | 13 | 4.50 | -3.90 | 8.400 | 1.399 | 47.00 | 47.57 | Intercept = | 0.2281 | | | | | 10 | 3.30 | -2.70 | 6.000 | 1.185 | 41.00 | 41.50 | Corr. coeff.: | 0.9981 | | | | | 7 | 2.40 | -1.60 | 4.000 | 0.972 | 32.00 | 32.39 | | | | | | | 5 | 1.40 | -1.00 | 2.400 | 0.757 | 26.00 | 26.32 | | | | | | #### Calculations: Qstd = 1/m[Sqrt(H2O(Pa/Pstd)(Tstd/Ta))-b] IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)] Qstd = standard flow rate IC = corrected chart response I = actual chart response m = calibrator Qstd slope b = calibrator Qstd intercept Ta = actual temperature during calibration (deg K) Pa = actual pressure during calibration (mm Hg) Tstd = 298 deg K Pstd = 760 mm Hg #### For subsequent calculation of sampler flow: 1/m((I)[Sqrt(298/Tav)(Pav/760)]-b) m = sampler slope b = sampler intercept I = chart response Tav = daily average temperature Pav = daily average pressure FLOW RATE CHART 60.00 50.00 Actual Chart Response (IC) 40.00 30.00 20.00 10.00 0.00 0.000 0.500 1.000 1.500 2.000 Standard Flow Rate (m3/min) **CHOI KAM HO Project Consultant** Report Date: 4th January, 2018 Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com Report no.: 172379CA171674 Page 1 of 1 ## CALIBRATION CERTIFICATE OF SOUND LEVEL METER **Client Supplied Information** Client: MateriaLab Consultants Ltd. Address: Room 723 & 725, 7F., Block B Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Chung, N.T. Project : Calibration Services Details of Unit Under Test, UUT Description Sound Level Meter Manufacturer Casella Model No. Casella (Model no. CEL-63X(meter), CEL-251(microphone), CEL-495(Preamplifier)) Serial No. 1057034 (meter), 01308 (microphone), 002672 (Preamplifier)) **Next Calibration Date** 30-Jul-2018 Specification Limit EN 61672: 2003 Type 1 **Laboratory Information** Description B & K Acoustic Multifunction Calibrator 4226 (Traditional free field setting) Equipment ID. : R-108-1 Date of Calibration: 31-Jul-2017 Ambient Temperature: 22 2 °C Calibration Location: Calibration Laboratory of MateriaLab Method Used By direct comparison #### Calibration Results: | Parameters | | Mean Value (dB) | Specific | cation | Limit(dB) | |----------------------|-------------|-----------------|----------|--------|-----------| | | 4000Hz | 2.5 | 2.6 | to | -0.6 | | | 2000Hz | 0.5 | 2.8 | to | -0.4 | | | 1000Hz | -1.0 | 1.1 | to | -1.1 | | A-weighing frequency | 500Hz | -4.5 | -1.8 | to | -4.6 | | response | 250Hz | -10.0 | -7.2 | to | -10.0 | | | 125Hz | -17.4 | -14.6 | to | -17.6 | | | 63Hz | -27.3 | -24.7 | to | -27.7 | | | 31.5Hz | -40.0 | -37.4 | to | -41.4 | | Differential level | 94dB-104dB | 0.0 | | ± 0.6 | | | linearity | 104dB-114dB | 0.0 | | ± 0.6 | | #### Remarks: - 1. The equipment used in this calibration is traceable to recognized National Standards. - 2. The mean value is the average of four measurements. - 3. For calibration: Reference SPL are 94, 104 & 114dB, range setting is 20-140dB & time weighing is fast - 4. The equipment complies with EN 61672: 2003 Type 1 sound level meter for the above measurement. Date: 2-8- 2017 Certified by _ Date : ₂ Kwok Chi Wa (Assistant Manager) 1-8-2017 ** End of Report ** ## Certificate of Conformity and Calibration Instrument Model:- CEL-633A Serial Number 0873599 V006-01 Microphone Type:- Serial Number CEL-251 <u>Preamplifier Type:-</u> Serial Number CEL-495 003318 1910 Instrument Class/Type:- 1 #### Applicable standards:- IEC 61672: 2002 / EN 60651 (Electroacoustics - Sound Level Meters) IEC 60651 1979 (Sound Level Meters), ANSI S1.4: 1983 (Specifications For Sound Level Meters) Note:- The test sequences performed in this report are in accordance with the current Sound level meter Standard - IEC61672. The combination of tests performed are considered to confirm the products electro-acoustic performance to all applicable standards including superceeded Sound Level Meter Standards - IEC60651 and IEC60804. Test Conditions:- 20 °C 50 %RH 1011 mBar Test Engineer:- Nicola Cartwright Date of Issue:- April 5, 2017 #### Declaration of conformity:- This test certificate confirms that the instrument specified above has been successfully tested to comply with the manufacturer's published specifications. Tests are performed using equipment traceable to national standards in accordance with Casella's ISO 9001:2008 quality procedures. This product is certified as being compliant to the requirements of the CE Directive. #### Test Summary:- All Tests Pass Self Generated Noise Test Electrical Signal Test Of Frequency Weightings **All Tests Pass** Frequency & Time Weightings At 1 kHz **All Tests Pass** Level Linearity On The Reference Level Range **All Tests Pass** Toneburst Response Test All Tests Pass All Tests Pass C-peak Sound Levels **All Tests Pass** Overload Indication **All Tests Pass** Acoustic Tests ## Combined Electro-Acoustic Frequency Response - A Weighted Combined Electro-Acoustic Frequency Response - A Weighted (IEC 61672-3:2006) The following A-Weighted frequency response graph shows this instruments overall frequency response based upon the application of multi-frequency pressure field calibrations. The microphones Pressure to Free field correction coefficients are applied to pressure response. Reference level taken at 1kHz. #### Casella UK Regent House, Wolseley Road, Kempston, Bedford MK42 7JY United Kingdom Tel: +44 (0) 1234 844100 Fax: +44(0) 1234 841490 E-mail: info@casellasolutions.com #### Casella USA 415 Lawrence Bell Drive, Unit 4 Buffalo, NY 14221, USA Toll Free (800) 366-2966 Toll Free (800) 366-2966 Tel: +1 (710) 276 3040 E-mail: info@casellausa.com #### Casella India Ideal Industries India Pvt Ltd. 229-230, Spazedge, Tower -B Sohna Road, Sector-47, Gurgaon-122001, Haryana , India. Tel: +91 124 4495100 E-mail: casella.e ales@ideal-industries.in ## Casella China Ideal Industries China Room 305, Building 1, No 1279, Chuanqiao Rd, Pudong New District, Shanghai, China Tel. +86-21-31263188 Fax: +86-21-610-5906 Email: info@casellasolutions.cn #### Casella Australia Ideal Industries (Aust) PTY. LTD Unit 17, 35 Dunlop Rd, Mulgrave Vic. 3170, Australia. Email: australia@casellasolutions.com Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com Report no.: 172379CA172109 Page 1 of 1 ## CALIBRATION CERTIFICATE OF SOUND LEVEL METER **Client Supplied Information** Client: MateriaLab Consultants Ltd. Address: Room 723 & 725, 7/F., Block B Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Chung, N.T. Project : Calibration Services Details of Unit Under Test, UUT Description Sound Level Meter Manufacturer Casella Model No. Serial No. Meter Microphone Preamplifier CL63X CE-251 CEL-495 4637931 01993 003538 Equipment ID N-13 Next Calibration Date 17-Sep-2018 Specification Limit EN 61672: 2003 Type 1 ### **Laboratory Information** Description B & K Acoustic Multifunction Calibrator 4226 (Traditional free field setting) Equipment ID. : R-108-1 Date of Calibration: 18-Sep-2017 Ambient Temperature: 22 2°C Calibration Location: Calibration Laboratory of MateriaLab Method Used By direct comparison #### Calibration Results: | Parame | ters | Mean Value (dB) | Specific | ation | Limit(dB) | |--------------------|-------------|-----------------|----------|-------|-----------| | | 4000Hz | 1.4 | 2.6 | to | -0.6 | | | 2000Hz | 1.3 | 2.8 | to | -0.4 | | A-weighing | 1000Hz | 0.0 | 1.1 | to | -1.1 | | frequency | 500Hz | -3.2 | -1.8 | to | -4.6 | | | 250Hz | -8.8 | -7.2 | to | -10.0 | | response | 125Hz | -16.3 | -14.6 | to | -17.6 | | | 63Hz | -26.3 | -24.7 | to | -27.7 | | | 31.5Hz | -39.3 | -37.4 | to | -41.4 | | Differential level | 94dB-104dB | 0.0 | | ± 0.6 | | | linearity | 104dB-114dB | 0.0 | | ± 0.6 | | #### Remarks: - 1. The equipment used in this calibration is traceable to recognized National Standards. - 2. The mean value is the average of four measurements. - 3. For calibration: Reference range is 30-130dB, reference SPL is 94,104 & 114dB, frequency weighing is A, - 4. The equipment does comply with EN 61672: 2003 Type 1 sound level meter for the above measurement. Checked by: N Date: 19-9- 201 Certified by _ _ _ _ Chan Chun Wai (Manager) CA-R-297 (22/07/2009) ** Fnd of Donord ** The copyright of this document is owned by Fugro Technical Services Limited. It may not be reproduced except with prior written approval from the Company. Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun. N.T.. Hong Kong. : +852 2450 8233 Fax : +852 2450 6138 E-mail: matlab@fugro.com Website: www.fugro.com Report no.: 172379CA171674(1) Page 1 of 1 ## CALIBRATION CERTIFICATE OF SOUND CALIBRATOR ## Client Supplied Information Client: MateriaLab Consultants Ltd. Address: Room 723 & 725, 7F., Block B Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Chung, N.T. Project: Calibration Services Details of Unit Under Test, UUT Description Sound Calibrator Manufacturer Caselia (Model no. CEL-120/1) Serial No. 0255083 Next Calibration Date 30-Jul-2018 Specification Limit ±0.5dB ## **Laboratory Information** Description Reference Sound Level Meter Equipment ID. : R-119-1 Date of Calibration: 31-Jul-2017 Ambient Temperature: 21 °C Calibration Location: Calibration Laboratory of MateriaLab Method Used By direct comparison #### Calibration Results: | Parameters (Setting of UUT) | Mean Value (error of measurement) | Specification Limit (dB) | | |-----------------------------|-----------------------------------|--------------------------|--| | 94dB | 0.1 dB | 10.540 | | | 114dB | 0.1 dB | ±0.5dB | | #### Remarks: - 1. The equipment used in this calibration is traceable to recognized National Standards. - 2. The mean value is the average of four measurements. - 3. The equipment does comply with the specification limit. Date: 4-8-2017 CA-R-297 (22/07/2009) Kwok Chi Wa (Assistant Manager) ** End of Report ** # Certificate of Conformance and Calibration for | Conformance and Calibration for | | | | | | | |---|---|--|--|--|--|--| | CEL-120 Acou | ıstic Calibrator | | | | | | | Applicable Standards : JEC (| 50942: 2003 & ANSI S1.40: 2006 | | | | | | | CEL-120/1 Class 1 | | | | | | | | CEL-120/2 Class 2 | | | | | | | | Serial No: | 26 | | | | | | | Firmware: 04 | | | | | | | | Temperature: 228°C Pro | essure: 010. 8 _{mb %RH} 51.8 | | | | | | | 400177 | | | | | | | | Frequency = 1.00 kHz ± 2 Hz
T.H.D. = $< 1\%$ | Calibration Level | | | | | | | SPL @ 114.0dB Setting | 114.01 dB | | | | | | | SPL @ 94.0dB Setting
(CEL-120/1 only) | 93.96 dB/N.A | | | | | | | Engineer: | 1 4 JUN 2017 | | | | | | | | | | | | | | | Company test equipment and acoustic workin
subject to periodic calibration, traceable to U
company's ISO90 | g standards, used for conformance testing, are
IK national standards, in accordance with the
II Quality System. | | | | | | | DECLARATION C
is certificate confirms that the instrument specified
the manufacturer's published specifications and t | above has been produced and tested to comply with | | | | | | | Casella CE
Regent House, Wolseley Road, I
Phone: +44 (0) 1234 844100
E-mail: info@ | Kempston, Bedford. MK42 7JY Fax: +44 (0) 1234 841490 casellacel.com | | | | | | | Web: www.casellar | neasurement.com 198032A-01 | | | | | | | | | | | | | | Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Fax : +852 2450 6138 E-mail: matlab@fugro.com Website: www.fugro.com Report No.: 161966CA171055 Page 1 of 1 ## **CALIBRATION CERTIFICATE OF ANEMOMETER** **Client Supplied Information** Client: MateriaLab Consultants Ltd. Project: Calibration Services **Details of Unit Under Test, UUT** Description Anemometer Manufacturer: Benetech Model No. GM816 Serial No. 13372555 Equipment ID.: N/A Next Calibration Date: 09-May-2018 **Laboratory Information** Details of Reference Equipment - Description Reference Anemometer Equipment ID.: R-101-4 Date of Calibration 10-May-2017 Ambient Temperature 22 °C Calibration Location Calibration Laboratory of MateriaLab Method Used : By direct Comparison ## Calibration Results: | Reference Reading | UUT Reading | Error | |-------------------|-------------|-------| | (m/s) | (m/s) | (m/s) | | 2.00 | 2.0 | 0.0 | | 3.98 | 3.9 | -0.1 | | 5.98 | 5.4 | -0.6 | | 8.01 | 7.0 | -1.0 | | 10.01 | 8.8 | -1.2 | #### Remark: 1. The equipment being used in this calibration is traceable to recognized National Standards. Date: 12-5-2017 Certified by: Chan Chun Wai (Manager) ** End of Report **