5-POINT CALIBRATION DATA SHEET

File No. MA20003/44/0003 KTD1 - Centre of Excellence in Paediatrics (Children's Hospital) Project No. 3-Oct-20 Next Due Date: 3-Dec-20 Operator: SK Date: Equipment No.: A-01-44 TE-5170 _____ Serial No. ____ 1316 Model No.: **Ambient Condition** 301.3 758.4 Temperature, Ta (K) Pressure, Pa (mmHg) **Orifice Transfer Standard Information** Serial No. 3746 Slope, mc 0.0592 Intercept, bc -0.02740 mc x Qstd + bc = $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ 17-Jan-20 Last Calibration Date: Qstd = $\{ [\Delta H \times (Pa/760) \times (298/Ta)]^{1/2} -bc \} / mc$ Next Calibration Date: 17-Jan-21 **Calibration of TSP Sampler** Orfice HVS Calibration ΔH (orifice), $[\Delta W \times (Pa/760) \times (298/Ta)]^{1/2}$ Qstd (CFM) ΔW (HVS), in. Point $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ in. of water X - axis of water Y-axis 2.91 1 12.8 3.55 60.50 8.6 2 10.3 3.19 54.32 6.5 2.53 4.9 7.9 2.79 47.63 2.20 3 5.8 2.39 3.3 1.80 4 40.88 5 3.0 1.72 29.53 1.8 1.33 By Linear Regression of Y on X Slope, $mw = \underline{0.0511}$ Intercept, bw = -0.2236 Correlation coefficient* = *If Correlation Coefficient < 0.990, check and recalibrate. **Set Point Calculation** From the TSP Field Calibration Curve, take Qstd = 43 CFM From the Regression Equation, the "Y" value according to mw x Qstd + bw = $[\Delta W \times (Pa/760) \times (298/Ta)]^{1/2}$ Therefore, Set Point; W = $(mw \times Qstd + bw)^2 \times (760 / Pa) \times (Ta / 298) =$ 3.95 Remarks: Conducted by: SK Wong Signature: 3 October 2020 Date: 3 October 2020 Checked by: Henry Leung Signature: Date:

5-POINT CALIBRATION DATA SHEET

File No. MA20003/41/0002

Project No.	KTD 2c - G/IC Zone next to Kwun Tong Bypass (Next to the Kowloon Bay Sewage Interception Station)						
Date:	3-Oct-20		Next Due Date:	:: 3-Dec-20		Operator:	SK
Equipment No.:	A-(01-41	Model No.:	TE 5170		Serial No.	5280
			Ambient C	ondition			
Temperatur	re, Ta (K)	301.3	Pressure, Pa	(mmHg)		758.4	
			ifice Transfer Star			_	
Serial No.		3746	Slope, mc	0.0592	Intercept		-0.0274
Last Calibra		17-Jan-20	mc x Qstd + bc = $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ Qstd = $\{[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2} -bc\} / mc$			J	
Next Calibra	ation Date:	17-Jan-21	<u> </u>	$Qsta = \{ \Delta H X$	(Pa//00) X (298/.	rajj -bc _{}/}	inc
			Calibration of T	ΓSP Samnler			
C-1th of		Oı	fice	- 31 Sumpici		HVS	
Calibration Point	ΔH (orifice), in. of water		60) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of water	[ΔW x (Pa/	(760) x (298/Ta)] ^{1/2} Y-axis
1	13.6		3.66	62.35	6.6		2.55
2	11.0		3.29	56.12	5.3		2.29
3	8.0		2.81	47.93	4.1		2.01
4	4.6		2.13		2.6		1.60
5	2.5	1.57		27.00	1.8		1.33
By Linear Regr		X	_				
Slope , mw =0.0344 Correlation coefficient* =		_		ntercept, bw	0.374	4	
*If Correlation C			.9984	•			
"II Correlation C	oemcient < 0.9	90, check and rec	canorate.				
			Set Point Ca	alculation			
From the TSP Fi	eld Calibration	Curve, take Qstd					
From the Regress	sion Equation, t	he "Y" value acc	ording to				
· ·	•		-		1/2		
		mw x ($\mathbf{Qstd} + \mathbf{bw} = [\Delta \mathbf{W} \ \mathbf{x}]$	(Pa/760) x (29	98/Ta)] ^{1/2}		
Therefore, Se	et Point; W = (n	nw x Qstd + bw)	² x (760 / Pa) x (7	Γa / 298) =	3.49		
Remarks:							
Conducted by:	SK Wong	Signature:		.•		Date:	3 October 2020
Checked by:	Henry Leung	Signature:	- land	Xoz		Date:	3 October 2020
			` /	1			

5-POINT CALIBRATION DATA SHEET

File No. MA20003/04/0002 Project No. KER 1 - Future Residential Development at Kerry Godown 3-Oct-20 Next Due Date: 3-Dec-20 Operator: SK Date: Equipment No.: A-01-04 TE 5170 Serial No. 10595 Model No.: **Ambient Condition** 301.3 758.4 Temperature, Ta (K) Pressure, Pa (mmHg) **Orifice Transfer Standard Information** Serial No. 3746 Slope, mc 0.0592 Intercept, bc -0.0274 mc x Qstd + bc = $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ 17-Jan-20 Last Calibration Date: Qstd = $\{ [\Delta H \times (Pa/760) \times (298/Ta)]^{1/2} -bc \} / mc$ Next Calibration Date: 17-Jan-21 **Calibration of TSP Sampler** Orfice HVS Calibration ΔH (orifice), $[\Delta W \times (Pa/760) \times (298/Ta)]^{1/2}$ Qstd (CFM) ΔW (HVS), in. Point $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ in. of water X - axis of water Y-axis 1 13.5 3.65 62.12 6.6 2.55 2 10.7 3.25 55.36 5.3 2.29 8.2 2.84 48.52 4.0 1.99 3 2.5 1.57 4 4.4 2.08 35.66 5 2.6 1.60 27.52 1.8 1.33 By Linear Regression of Y on X Slope, mw = 0.0353Intercept, bw : 0.3298 Correlation coefficient* = *If Correlation Coefficient < 0.990, check and recalibrate. **Set Point Calculation** From the TSP Field Calibration Curve, take Qstd = 43 CFM From the Regression Equation, the "Y" value according to mw x Qstd + bw = $[\Delta W \times (Pa/760) \times (298/Ta)]^{1/2}$ Therefore, Set Point; $W = (mw \times Qstd + bw)^2 \times (760 / Pa) \times (Ta / 298) = 3.45$ Remarks: 3 October 2020 Conducted by: SK Wong Signature: Date: Checked by: Henry Leung Signature: 3 October 2020 Date:

5-POINT CALIBRATION DATA SHEET

06 November 2020

Date:

File No. MA20003/18/0005 Project No. CKL 1 - Flat 121 Cha Kwo Ling Village 6-Nov-20 Next Due Date: 6-Jan-21 Operator: SK Date: Equipment No.: A-01-18 TE 5170 _____ Serial No. ____ 0723 Model No.: **Ambient Condition** 297.7 761.9 Temperature, Ta (K) Pressure, Pa (mmHg) **Orifice Transfer Standard Information** Serial No. 3746 Slope, mc 0.0592 Intercept, bc -0.0274 mc x Qstd + bc = $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ Last Calibration Date: 17-Jan-20 Qstd = $\{ [\Delta H \times (Pa/760) \times (298/Ta)]^{1/2} -bc \} / mc$ Next Calibration Date: 17-Jan-21 **Calibration of TSP Sampler** Orfice HVS Calibration ΔH (orifice), $[\Delta W \times (Pa/760) \times (298/Ta)]^{1/2}$ Qstd (CFM) ΔW (HVS), in. Point $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ in. of water X - axis of water Y-axis 1 13.8 3.72 63.32 10.1 3.18 2 11.2 3.35 57.09 7.6 2.76 8.4 2.90 49.51 6.0 2.45 3 5.3 2.31 3.6 1.90 4 39.42 5 3.1 1.76 30.26 1.9 1.38 By Linear Regression of Y on X Slope , mw = ______0.0533 Intercept, bw = -0.2162 Correlation coefficient* = *If Correlation Coefficient < 0.990, check and recalibrate. **Set Point Calculation** From the TSP Field Calibration Curve, take Qstd = 43 CFM From the Regression Equation, the "Y" value according to mw x Qstd + bw = $[\Delta W \times (Pa/760) \times (298/Ta)]^{1/2}$ Therefore, Set Point; W = $(mw \times Qstd + bw)^2 \times (760 / Pa) \times (Ta / 298) =$ 4.29 Remarks: Conducted by: SK Wong Signature: 06 November 2020 Date:

Checked by: Henry Leung Signature:

5-POINT CALIBRATION DATA SHEET

06 November 2020

Date:

File No. MA20003/55/0005 Project No. CKL 2 - Flat 103 Cha Kwo Ling Village 6-Nov-20 Next Due Date: 6-Jan-21 Operator: SK Date: Equipment No.: A-01-55 TE 5170 Serial No. 1956 Model No.: **Ambient Condition** 297.7 761.9 Temperature, Ta (K) Pressure, Pa (mmHg) **Orifice Transfer Standard Information** Serial No. 3746 Slope, mc 0.0592 Intercept, bc -0.0274 mc x Qstd + bc = $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ 17-Jan-20 Last Calibration Date: Qstd = $\{ [\Delta H \times (Pa/760) \times (298/Ta)]^{1/2} -bc \} / mc$ Next Calibration Date: 17-Jan-21 **Calibration of TSP Sampler** Orfice HVS Calibration ΔH (orifice), $[\Delta W \times (Pa/760) \times (298/Ta)]^{1/2}$ Qstd (CFM) ΔW (HVS), in. Point $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ in. of water X - axis of water Y-axis 9.6 1 14.5 3.81 64.90 3.10 2 11.3 3.37 57.35 7.0 2.65 8.4 2.90 49.51 5.6 2.37 3 2.33 5.4 3.5 1.87 4 39.78 5 3.1 1.76 30.26 2.2 1.49 By Linear Regression of Y on X Slope , mw = _____0.0461 Intercept, bw = 0.0661 Correlation coefficient* = *If Correlation Coefficient < 0.990, check and recalibrate. **Set Point Calculation** From the TSP Field Calibration Curve, take Qstd = 43 CFM From the Regression Equation, the "Y" value according to mw x Qstd + bw = $[\Delta W \times (Pa/760) \times (298/Ta)]^{1/2}$ Therefore, Set Point; $W = (mw \times Qstd + bw)^2 \times (760 / Pa) \times (Ta / 298) =$ 4.19 Remarks: Conducted by: SK Wong Signature: 06 November 2020 Date:

Checked by: Henry Leung Signature:

5-POINT CALIBRATION DATA SHEET

File No. MA20003/18/0004 Project No. CKL 1 - Flat 121 Cha Kwo Ling Village 7-Sep-20 Next Due Date: 7-Nov-20 Operator: SK Date: Equipment No.: _____ A-01-18 TE 5170 _____ Serial No. ____ 0723 Model No.: **Ambient Condition** 302.4 755.4 Temperature, Ta (K) Pressure, Pa (mmHg) **Orifice Transfer Standard Information** Serial No. 3746 Slope, mc 0.0592 Intercept, bc -0.0274 mc x Qstd + bc = $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ Last Calibration Date: 17-Jan-20 Qstd = $\{ [\Delta H \times (Pa/760) \times (298/Ta)]^{1/2} -bc \} / mc$ Next Calibration Date: 17-Jan-21 **Calibration of TSP Sampler** Orfice HVS Calibration ΔH (orifice), $[\Delta W \times (Pa/760) \times (298/Ta)]^{1/2}$ Qstd (CFM) ΔW (HVS), in. Point $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ in. of water X - axis of water Y-axis 9.9 1 14.6 3.78 64.34 3.11 2 11.6 3.37 57.40 7.6 2.73 8.5 2.89 49.20 6.0 2.42 3 5.4 2.30 3.6 1.88 4 39.31 5 3.4 1.82 31.29 2.0 1.40 By Linear Regression of Y on X Slope , mw = _____0.0509 Intercept, bw : -0.1489 Correlation coefficient* = *If Correlation Coefficient < 0.990, check and recalibrate. **Set Point Calculation** From the TSP Field Calibration Curve, take Qstd = 43 CFM From the Regression Equation, the "Y" value according to mw x Qstd + bw = $[\Delta W \times (Pa/760) \times (298/Ta)]^{1/2}$ Therefore, Set Point; W = $(mw \times Qstd + bw)^2 \times (760 / Pa) \times (Ta / 298) =$ 4.24 Remarks: Conducted by: SK Wong Signature: 7 September 2020 Date: Checked by: Henry Leung Signature: 7 September 2020 Date:

5-POINT CALIBRATION DATA SHEET

7 September 2020

Date:

File No. MA20003/55/0004 Project No. CKL 2 - Flat 103 Cha Kwo Ling Village 7-Sep-20 Next Due Date: 7-Nov-20 Operator: SK Date: Equipment No.: A-01-55 TE 5170 Serial No. 1956 Model No.: **Ambient Condition** 302.4 755.4 Temperature, Ta (K) Pressure, Pa (mmHg) **Orifice Transfer Standard Information** Serial No. 3746 Slope, mc 0.0592 Intercept, bc -0.0274 mc x Qstd + bc = $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ Last Calibration Date: 17-Jan-20 Qstd = $\{ [\Delta H \times (Pa/760) \times (298/Ta)]^{1/2} -bc \} / mc$ Next Calibration Date: 17-Jan-21 **Calibration of TSP Sampler** Orfice HVS Calibration ΔH (orifice), $[\Delta W \times (Pa/760) \times (298/Ta)]^{1/2}$ Qstd (CFM) ΔW (HVS), in. Point $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ in. of water X - axis of water Y-axis 15.0 9.3 1 3.83 65.21 3.02 2 11.6 3.37 57.40 7.0 2.62 8.6 2.90 49.49 5.6 2.34 3 2.30 5.4 3.5 4 39.31 1.85 5 3.2 1.77 30.37 2.3 1.50 By Linear Regression of Y on X Slope , mw = _____0.0433 Intercept, bw = 0.1717 Correlation coefficient* = *If Correlation Coefficient < 0.990, check and recalibrate. **Set Point Calculation** From the TSP Field Calibration Curve, take Qstd = 43 CFM From the Regression Equation, the "Y" value according to mw x Qstd + bw = $[\Delta W \times (Pa/760) \times (298/Ta)]^{1/2}$ Therefore, Set Point; $W = (mw \times Qstd + bw)^2 \times (760 / Pa) \times (Ta / 298) =$ 4.22 Remarks: Conducted by: SK Wong Signature: 7 September 2020 Date:

Checked by: Henry Leung Signature:

RECALIBRATION DUE DATE:

January 17, 2021

Certificate of Calibration

Calibration Certification Information

Cal. Date: January 17, 2020

Rootsmeter S/N: 438320

Ta: 295 **Pa:** 744.2

°K

Operator: Jim Tisch

mm Hg

Calibration Model #: TE-5025A

Calibrator S/N: 3746

Run	Vol. Init (m3)	Vol. Final (m3)	ΔVol. (m3)	ΔTime (min)	ΔP (mm Hg)	ΔH (in H2O)
1	1	2	1	1.4340	3.2	2.00
2	3	4	1	1.0180	6.4	4.00
3	5	6	1	0.9080	7.9	5.00
4	7	8	1	0.8700	8.7	5.50
5	9	10	1	0.7150	12.6	8.00

Data Tabulation					
Vstd	Qstd	$\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right) \left(\frac{Tstd}{Ta}\right)}$		Qa	√∆H(Ta/Pa)
(m3)	(x-axis)	(y-axis)	Va	(x-axis)	(y-axis)
0.9849	0.6868	1.4066	0.9957	0.6944	0.8904
0.9807	0.9633	1.9892	0.9914	0.9739	1.2592
0.9787	1.0779	2.2240	0.9894	1.0896	1.4078
0.9776	1.1237	2.3325	0.9883	1.1360	1.4765
0.9724	1.3601	2.8131	0.9831	1.3749	1.7808
	m=	2.09221		m=	1.31010
QSTD	b=	-0.02779	QA	b=	-0.01759
	r=	0.99994		r=	0.99994

Calculations					
Vstd=	ΔVol((Pa-ΔP)/Pstd)(Tstd/Ta)	Va=	ΔVol((Pa-ΔP)/Pa)		
Qstd=	Vstd/∆Time	Qa=	Va/∆Time		
For subsequent flow rate calculations:					
Qstd=	$1/m\left(\left(\sqrt{\Delta H\left(\frac{Pa}{Pstd}\right)\left(\frac{Tstd}{Ta}\right)}\right)-b\right)$	Qa=	$1/m\left(\left(\sqrt{\Delta H(Ta/Pa)}\right)-b\right)$		

Standard Conditions					
Tstd:	298.15 °K				
Pstd:	760 mm Hg				
	Key				
ΔH: calibrator manometer reading (in H2O)					
ΔP: rootsmeter manometer reading (mm Hg)					
Ta: actual absolute temperature (°K)					
Pa: actual barometric pressure (mm Hg)					
b: intercept					
m: slope					

RECALIBRATION

US EPA recommends annual recalibration per 1998
40 Code of Federal Regulations Part 50 to 51,
Appendix B to Part 50, Reference Method for the
Determination of Suspended Particulate Matter in
the Atmosphere, 9.2.17, page 30

FAX: (513)467-9009

Cerificate of Calibration - Wind Monitoring Station

Manufacturer: <u>Davis Instruments</u>

Model No.: <u>Davis7440</u>

Serial No.: <u>MC01010A44</u>

Equipment No.: SA-03-04

Date of Calibration <u>21-Aug-2020</u>

Next Due Date <u>21-Feb-2021</u>

1. Performance check of Wind Speed

Wind Sp	peed, m/s	Difference D (m/s)
Wind Speed Reading (V1)	Anemometer Value (V2)	D = V1 - V2
0.0	0.0	0.0
1.5	1.5	0.0
2.2	2.3	-0.1
3.5	3.4	0.1

2. Performance check of Wind Direction

Wind Di	rection (°)	Difference D (°)
Wind Direction Reading (W1)	Marine Compass Value (W2)	D = W1 - W2
0	0	0.0
90	90	0.0
180	180	0.0
270	270	0.0

Test Specification:

- 1. Performance Wind Speed Test The wind meter was on-site calibrated against the anemometer
- 2. Performance Wind Direction Test The wind meter was on-site calibrated against the marine compass at four direction

Calibrated by:	/b/\	Approved by:	Lean Mar	
	Wong Shing Kwai	_	Henry Leung	