High-Volume TSP Sampler 5-POINT CALIBRATION DATA SHEET

File No. MA16034/05/0046

Project No.	AM1 - Tin Hau	Temple				_	
Date:	14-F	Seb-24	Next Due Date:	14-	Apr-24	Operator:	SK
Equipment No.:	A-0	01-05	Model No.:	G	S2310	Serial No.	10599
			Ambient C	ondition			
Temperatur	re, Ta (K)	294	Pressure, Pa			765.2	
•	, , ,		,				
		Or	ifice Transfer Star	ndard Informa	ation		
Serial	No.	3864	Slope, mc	0.05976	Intercept		-0.05018
Last Calibra	ntion Date:	15-Jan-24			$c = [\Delta H \times (Pa/760)]$		
Next Calibra	ation Date:	14-Jan-25		$Qstd = \{ [\Delta H \ x]$	(Pa/760) x (298/7	Ta)] ^{1/2} -bc} / mc	:
			Calibration of T	ISP Sampler		TTT	
Calibration Point	ΔH (orifice), in. of water		Orfice [ΔH x (Pa/760) x (298/Ta)] ^{1/2}		ΔW (HVS), in. of water		0) x (298/Ta)] ^{1/2}
1	12.8		3.61		8.8		5.00
2	10.1		3.21		6.5	2	58
3	7.2		2.71		4.6	2	17
4	5.2		2.30		2.7	1	.66
5	2.8		1.69		1.3	1	.15
	0.0577 coefficient* =	<u> </u>	.9982 calibrate.		-0.551	13	
English TCD E	-1.1 C-13b (i)	C (-1 O-(1	Set Point Ca	liculation			
		Curve, take Qstd ne "Y" value acco mw x ((Pa/760) x (29	98/Ta)] ^{1/2}		
Therefore, Se	et Point; W = (n	nw x Qstd + bw)	² x (760 / Pa) x (7	Γa / 298) =	3.65	<u> </u>	
Remarks:							
Conducted by:	Wong Sl	ning Kwai	Signature:	K	火-	Date:	14-Feb-24
Checked by:	Henry	Leung	Signature:	-lem	Jan	Date:	14-Feb-24

High-Volume TSP Sampler 5-POINT CALIBRATION DATA SHEET

File No. MA16034/05/0047

Project No.	AM1 - Tin Hau	Temple					
Date:	14-A	.pr-24	Next Due Date:	e:14-Jun-24		Operator:	SK
Equipment No.:	A-0	1-05	Model No.:	GS	S2310	Serial No.	10599
			Ambient C	ondition			
Temperatur	re. Ta (K)	300.7	Pressure, Pa			759.1	
	, ()		1	(8)	ı	,,,,,	
		Or	ifice Transfer Star	ndard Informa	ation		
Serial	No.	3864	Slope, mc	0.05976	Intercept		-0.05018
Last Calibra	ation Date:	15-Jan-24		$c = [\Delta H \times (Pa/760)]$			
Next Calibra	ation Date:	14-Jan-25		$\mathbf{Qstd} = \{ [\Delta \mathbf{H} \ \mathbf{x}] \}$	(Pa/760) x (298/7	Γa)] ^{1/2} -bc} / mc	:
	l		Calibration of 7	TSP Sampler	T		
Calibration	+ T (Oı	rfice	Qstd (CFM)		HVS	
Point	ΔH (orifice), in. of water	[ΔH x (Pa/76	[ΔH x (Pa/760) x (298/Ta)] ^{1/2}		ΔW (HVS), in. of water		0) x (298/Ta)] ^{1/2} axis
1	13.1		3.60		8.9	2	.97
2	10.4	3.21		54.53	6.6	2	.56
3	7.5	2.72		46.43	4.6	2	.13
4	5.3		2.29		3.0	1	.72
5	3.0		1.72		1.8	1	.33
By Linear Regr Slope , mw =	ression of Y on X	K	,	Intercent hw -	-0.266	.	
	coefficient* =	_	.9973	mtercept, bw	-0.200		
	Coefficient < 0.99			•			
			Set Point Ca	alculation			
From the TSP Fi	eld Calibration C	Curve, take Ostd					
	sion Equation, th						
	•			(D. (E.(1)) (A)	20/m \1/2		
		mw x ($\mathbf{Qstd} + \mathbf{bw} = [\Delta \mathbf{W} \ \mathbf{x}]$	(Pa/760) x (29	98/Ta)]""		
Therefore, Se	et Point; W = (m	uw x Qstd + bw)	² x (760 / Pa) x (7	Γa / 298) =	3.95		
Remarks:							
					1		
Conducted by:	Wong Sh	ning Kwai	Signature:		<u> </u>	Date:	14-Apr-24
Checked by:	Henry	Leung	Signature:	\-lem	y Xvy	Date:	14-Apr-24

High-Volume TSP Sampler

5-POINT CALIBRATION DATA SHEET

File No. MA16034/08/0046

Project No.	AM2 - Sai Tso V	Van Recreation	Ground			•	
Date:	14-Feb-24 o.: A-01-08		Next Due Date: 14-A		Apr-24	Operator:	SK
Equipment No.:			Model No.:	G	S2310	Serial No.	1287
			Ambient C	Condition			
Temperatur	re, Ta (K)	294	Pressure, Pa			765.2	
		0"	ifice Transfer Sta	ndard Informs	ation .		
Serial	No.	3864	Slope, mc	0.05976	Intercept	t, bc	-0.05018
Last Calibra		15-Jan-24			$c = [\Delta H \times (Pa/760)]$		
Next Calibra		14-Jan-25			(Pa/760) x (298/7		
•			Calibration of	TSP Sampler			
Calibration		Or	fice	T		HVS	
Point	ΔH (orifice), in. of water	[ΔH x (Pa/76	50) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	Δ W (HVS), in. of water		50) x (298/Ta)] ^{1/2} - axis
1	13.0		3.64	61.79	8.6		2.96
2	10.0		3.19	54.30	6.3		2.54
3	7.4		2.75	46.83	4.4		2.12
4	5.0		2.26	38.64	2.8		1.69
5	2.8		1.69	29.13	1.4		1.20
Correlation o			alibrate.	-			
			Set Point C	alculation			
From the TSP Fig	eld Calibration C	urve_take Ostd		alculation			
From the Regress		_					
	— 1 ,						
		mw x ($\mathbf{pstd} + \mathbf{bw} = [\Delta \mathbf{W} \ \mathbf{x}]$	x (Pa/760) x (29	98/Ta)] ^{1/2}		
Therefore, Se	et Point; W = (m	w x Qstd + bw)	² x (760 / Pa) x (′	Ta / 298) =	3.65		
							_
.							
Remarks:							
Conducted by:	Wong Sh	ing Kwai	Signature:	X	2	Date:	14-Feb-24
Conducted by.	wong an	ing ixwai	Signature.		<i>,</i> ~	Date	17-1 CU-24
Checked by	Henry	Leung	Signature:	\-l.	y Xon	Date:	14-Feb-24
	110.111		. 23	1			

High-Volume TSP Sampler

5-POINT CALIBRATION DATA SHEET

File No. MA16034/08/0047

Project No.	AM2 - Sai Tso	Wan Recreation	Ground					
Date:	14-Apr-24 t No.: A-01-08		Next Due Date: 14-Ju		Jun-24	Operator:	SK	
Equipment No.:			Model No.:	G:	GS2310		1287	
			Ambient C	ondition				
Temperatur	re, Ta (K)	300.7	Pressure, Pa			759.1		
~			ifice Transfer Star			_	0.07010	
Serial		3864	Slope, mc	0.05976	Intercept		-0.05018	
Last Calibra	The state of the s	15-Jan-24			$c = [\Delta H \times (Pa/760)]$ $(Pa/760) \times (298/7)$			
Next Calibra	ation Date:	14-Jan-25		$QSIU = \{[\Delta \Pi X]\}$	(Fa/700) X (290/	1a)j -bc}/II	ic	
		•	Calibration of 7	TSP Sampler				
C 12 - 2		Or	fice			HVS		
Calibration Point	ΔH (orifice), in. of water		50) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of water	[ΔW x (Pa/7	60) x (298/Ta)] ^{1/2} /-axis	
1	13.2		3.61		8.7		2.93	
2	10.2		3.18		6.4	2.52		
3	7.5	2.72		46.43	4.5		2.11	
4	5.2		2.27	38.80	2.9		1.69	
5	3.0		1.72	29.68	1.5	1.22		
Slope , mw = Correlation	0.0542 coefficient* =		. 9999	Intercept, bw	-0.399	22		
*If Correlation C	Coefficient < 0.9	90, check and rec	alibrate.					
			Set Point Ca	alculation				
From the TSP Fi	eld Calibration (Curve, take Qstd	= 43 CFM					
From the Regress	sion Equation, tl	ne "Y" value acco	ording to					
		mw v C	$\mathbf{pstd} + \mathbf{bw} = [\Delta \mathbf{W} \ \mathbf{x}]$	(Pa/760) v /20	08/Ta)1 ^{1/2}			
		mw x Ç	_ζ οια ⊤ υw – [Δ W X	(1 a/ / UU) X (2)	vo: 1 a) j			
Therefore, Se	et Point; W = (n	nw x Qstd + bw)	² x (760 / Pa) x (7	$\Gamma a / 298) =$	3.76			
Remarks:								
				h	ما			
Conducted by:	Wong Sl	ning Kwai	Signature:		<u> </u>	Date:	14-Apr-24	
				\ 0	^/			
Checked by:	Henry	Leung	Signature:	- tem	y Way	Date:	14-Apr-24	

High-Volume TSP Sampler 5-POINT CALIBRATION DATA SHEET

File No. MA16034/03/0046

Project No.	AM3 - Yau Lai	Estate, Bik Lai I	House					
Date:	14-Fe	eb-24	o-24 Next Due Date:		Apr-24	Operator:	SK	
Equipment No.:	A-0	1-03			S2310		10379	
			Ambient C	ondition				
Temperatu	re, Ta (K)	294	Pressure, Pa			765.2		
•	•							
		Or	ifice Transfer Star	ndard Informa	ntion			
Serial	l No.	3864	Slope, mc	0.05976	Intercept	t, bc	-0.05018	
Last Calibra	ation Date:	15-Jan-24	1	nc x Qstd + bo	$c = [\Delta H \times (Pa/760]]$) x (298/Ta)] ^{1/}	2	
Next Calibr	ation Date:	14-Jan-25		$\mathbf{Qstd} = \{ [\Delta \mathbf{H} \ \mathbf{x}] \}$	(Pa/760) x (298/7	Γa)] ^{1/2} -bc} / m	c	
	1		Calibration of	TSP Sampler				
Calibration		Or	fice			HVS	1./0	
Point	ΔH (orifice), in. of water	[ΔH x (Pa/76	(0) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of water		50) x (298/Ta)] ^{1/2} -axis	
1	12.8	3.61		61.32	8.4	2.93		
2	10.5	3.27		55.62	6.4	2.56		
3	7.7		2.80 47.73		4.5		2.14	
4	4.9	2.24		38.26	2.8		1.69	
5	3.0		1.75	30.12	1.6	1.28		
Slope , mw = Correlation	0.0520 coefficient* =	0	.9987	Intercept, bw	-0.305	33		
			Set Point Ca	lculation				
From the Regres	teld Calibration Casion Equation, the et Point; $W = (m^2 + m^2)$	mw x Q			98/Ta)] ^{1/2}			
Remarks: Conducted by:	Wong Sh	ing Kwai	Signature:	\lambda	<u></u>	Date:	14-Feb-24	
Checked by:	Henry	Leung	Signature:	\-lem	y Xon	Date:	14-Feb-24	

High-Volume TSP Sampler 5-POINT CALIBRATION DATA SHEET

File No. MA16034/03/0047

Project No.	AM3 - Yau Lai	Estate, Bik Lai I	House				
Date:	14-A	pr-24	Next Due Date:	14-	Jun-24	Operator:	SK
Equipment No.:	A-0	1-03		GS2310			10379
			•				
			Ambient C	ondition			
Temperatu	re, Ta (K)	300.7	Pressure, Pa	(mmHg)		759.1	
a			ifice Transfer Star				0.05010
Serial		3864	Slope, mc	0.05976	Intercept		-0.05018
Last Calibra	i	15-Jan-24			$c = [\Delta H \times (Pa/760)]$ $(Pa/760) \times (298/760)$		
Next Calibra	ation Date:	14-Jan-25		<u> </u>	(Fa/700) X (290/	1a)j -bc}/1	iic .
		•	Calibration of T	TSP Sampler			
Calibratian		Or	fice			HVS	
Calibration Point	ΔH (orifice), in. of water		50) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of water	[ΔW x (Pa/7	760) x (298/Ta)] ^{1/2} Y-axis
1	12.9		3.57		8.3		2.87
2	10.6	3.24		55.04	6.4	2.52	
3	7.8	2.78		47.34	4.6		2.13
4	5.0		2.22		3.0		1.72
5	3.0		1.72	29.68	1.7	1.30	
Slope , mw = Correlation		0	.9987	Intercept, bw	-0.182	29	
			Set Point Ca	alculation			
From the Regres	eld Calibration C sion Equation, th et Point; $W = (m)$	mw x Q			98/Ta)] ^{1/2}		
Remarks: Conducted by:	Wong Sh	ing Kwai	Signature:	\\	X -	Date:	14-Apr-24
Checked by:	Henry	Leung	Signature:	-lem	y day	Date:	14-Apr-24

High-Volume TSP Sampler

5-POINT CALIBRATION DATA SHEET

File No. MA20003/55/025

Project No.	CKL 2 - Flat 103	at 103 Cha Kwo Ling Village					
Date:	4-Ma	ar-24	Next Due Date:	4-N	Лау-24	Operator:	SK
Equipment No.:	A-0	1-55	Model No.: TE 5170		E 5170	Serial No.	1956
			Ambient C	ondition			
Temperatur	re, Ta (K)	292.7	Pressure, Pa			759.3	
•	, , ,		,				
		Or	ifice Transfer Star	ndard Informa	ation		
Serial No.		3864	Slope, mc	0.05976	Intercept	t, bc	-0.05018
Last Calibra	ntion Date:	15-Jan-24	r	nc x Qstd + bo	$c = [\Delta H \times (Pa/760)]$) x (298/Ta)] ¹	/2
Next Calibra	ation Date:	14-Jan-25	•	$Qstd = \{ [\Delta H x] \}$	(Pa/760) x (298/7	Γa)] ^{1/2} -bc} / m	nc
			Calibration of T	ΓSP Sampler			
Orfice							
Calibration Point	ΔH (orifice), in. of water	[ΔH x (Pa/760) x (298/Ta)] ^{1/2}		Qstd (CFM) X - axis	ΔW (HVS), in. of water		60) x (298/Ta)] ^{1/2} Y -axis
1	13.7	3.73		63.31	9.8		3.16
2	11.4	3.41		57.82	7.8	2.82	
3	9.5	3.11		52.86	6.1		2.49
4	5.7	2.41		41.13	3.1		1.78
5	3.6		1.91	32.86	2.0		1.43
By Linear Regression Slope, mw = Correlation Correlation C	0.0577 coefficient* =	0	.9975 calibrate.	Intercept, bw	-0.530	<u>5</u>	
Enom the TCD Ei	ald Calibration C	Samue Antre Ontol	Set Point Ca	uculation			
From the TSP Fig		_					
From the Regress	sion Equation, th	e i value acco	naing to				
		mw x Q	$\mathbf{Qstd} + \mathbf{bw} = [\mathbf{\Delta W} \ \mathbf{x}]$	(Pa/760) x (29	98/Ta)] ^{1/2}		
Therefore, Se	et Point; W = (m	w x Qstd + bw)	² x (760 / Pa) x (7	Γa / 298) =	3.75		
Remarks:							
Conducted by:	Wong Sh	ing Kwai	Signature:	X	<u>y</u> .	Date:	4-Mar-24
Checked by:	Henry	Leung	Signature:	\-lem	g dog	Date:	4-Mar-24

Certificate of Calibration

Description:	Laser Dust Mor	nitor	Date of	f Calibration	30-Mar-24			
Manufacturer:	Sibata Scientifi	c Technology LTD.		Validity of Calibration Record 30-May-24				
Model No.:	LD-3B			·		•		
Serial No.:	2Y6194							
Equipment No.:			Sensitivity	0.001 mg/m3				
High Volume Sa		A-01-03	-	sitivity Adjustment	578			
Tisch Calibration	-	3864		tivity Adjustment	578			
	-							
		I D M.	Calibration of 1 hr	TSP	TIVE			
Calibration		Laser Dust Mor	itor / Minute	HVS Mass concentration (μg/m ³)				
Point	Total Count		-axis	Mass	Y-axis	tg/III)		
1	4000		75.0		142.0			
2	3600		65.0		124.0			
3	3000	3000 55.0			103.0			
Average 65.0			65.0		123.0			
Slope, mw =	By Linear Regression of Y on X Slope , mw = 1.9500 Intercept, bw = -3.7500 Correlation coefficient* = 0.9990							
Set Correlation F	Factor , SCF	oler / Dust Meter, (1.9				
In-house method in according to the instruction manual: The Dust Monitor was compared with a calibrated High Volume Sampler and The result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler. Those filter papers are weighted by HOKLAS laboratory (HPCT Limited)								
Calibrated by: Technic	cal Officer (Wor	ng Shing Kwai)			Project Manager	1 1		

Certificate of Calibration

Description:	Digital Dust I	ndicator		Date of Calibration 30-Mar-24				
Manufacturer:	Sibata Scienti	fic Technology LTD.	_	Validity of Calibra	30-May-24			
Model No.:	LD-5R							
Serial No.:	8Y2374							
Equipment No.:	SA-01-04		Sensitivity	0.001 mg/m3				
High Volume Sa	mpler No.:	A-01-03	Before Sensiti	vity Adjustment	652			
Tisch Calibration Orifice No.: 3864			After Sensitiv	ity Adjustment	652			
	,	Ca	libration of 1 h	r TSP				
Calibration		Laser Dust Monitor			HVS			
Point	М	ass Concentration (µg/: X-axis	m3)	Mas	s concentration (µ Y-axis	ıg/m³)		
1	76.0			138.0				
2		66.0		122.0				
3		56.0		101.0				
Average	ge 66.0				120.3			
Slope , mw = Correlation co	1.850 pefficient* =	0.9970		cept, bw =	-1.7667			
			t Correlation I	Tactor				
	· ·	ligh Volume Sampler ($(\mu g/m^3)$		120.3			
	•	Oust Meter (μg/m ³)			66.0			
Measureing time					60.0			
Set Correlation I SCF = [K=Higl		pler / Dust Meter, (μ	g/m3)]	1.8				
The Dust Monitor Factor (CF) betw	or was compare ween the Dust N	o the instruction manual of with a calibrated Hig Monitor and High Voluted by HOKLAS laborated	gh Volume Sam me Sampler.		was used to gener	ate the Correlation		
Calibrated by:		ng Shing Kwai)	_	Approved by: Projec	Lengt Manager (Henry	Leung)		

Digital Dust Indicator

Date of Calibration 30-Mar-24

Certificate of Calibration

Description:

Manufacturer:	Sibata Scientific Technology LTD.	_	Validity of Calibration Record30-May-24				
Model No.:	LD-5R						
Serial No.:	8Y2373						
Equipment No.:	SA-01-05	Sensitivity	0.001 mg/m3				
High Volume Sa	ampler No.: <u>A-01-03</u>	Before Sensiti	vity Adjustment _	657			
Tisch Calibration	n Orifice No.: 3864	After Sensitivi	ty Adjustment	657			
	Ca	alibration of 1 h	r TSP				
Calibration	Laser Dust Monito	r		HVS			
Point	Mass Concentration (μg. X-axis	/m3)	Mass concentration (μg/m³) Y-axi s				
1	74.0		136.0				
2	64.0	116.0					
3	54.0	100.0					
Average	64.0			117.3			
Correlation co		et Correlation F	actor				
Particaulate Con	centration by High Volume Sampler			117.3			
	icentration by Dust Meter (µg/m³)	(18)	64.0				
Measureing time				60.0			
Set Correlation I	Factor, SCF						
SCF = [K=Hig	h Volume Sampler / Dust Meter, (μ	ıg/m3)]	1.8				
The Dust Monitor Factor (CF) betw	I in according to the instruction manuor was compared with a calibrated Hiween the Dust Monitor and High Volucers are weighted by HOKLAS laborated	gh Volume Samp ime Sampler.		as used to gener	ate the Correlation		
Calibrated by:	al Officer (Wong Shing Kwai)	_	Approved by: _ Project	Manager (Henry	Leung)		

Digital Dust Indicator

30-Mar-24

Date of Calibration

Certificate of Calibration

Description:

-								
Manufacturer:	Sibata Scientific T	oata Scientific Technology LTD.			Validity of Calibration Record 30-May-24			
Model No.:	LD-5R							
Serial No.:	972777							
Equipment No.:	SA-01-06		Sensitivity _	0.001 mg/m3				
High Volume Sa	mpler No.: A-0	01-03	Before Sensitiv	ity Adjustment	645			
Tisch Calibration	n Orifice No.: 3	864	After Sensitivity	y Adjustment	645			
		Ca	libration of 1 hr	TSP				
Calibration	La	ser Dust Monito	r		HVS			
Point	Mass (Concentration (µg	/m3)	Mas	s concentration ($\mu g/m^3$)		
X-axis					Y-axis			
1		75.0		141.0				
2	65.0			120.0				
3	55.0				101.0			
Average		65.0			120.7			
Slope , mw = Correlation co	2.0000 pefficient* =	0.9996		ept, bw =	-9.3333	<u>; </u>		
		Se	et Correlation Fa	ctor				
Particaulate Con	centration by High	Volume Sampler	$(\mu g/m^3)$		120.7			
Particaulate Con	centration by Dust	Meter (μ g/m ³)		65.0				
Measureing time	e, (min)				60.0			
Set Correlation I	Factor, SCF							
SCF = [K=Hig	h Volume Sampler	/ Dust Meter, (µ	g/m3)]	1.9				
In-house method	in according to the	instruction manu	al:					
The Dust Monito	or was compared wi	th a calibrated Hi	gh Volume Sampl	ler and The result	was used to gene	rate the Correlation		
	veen the Dust Moni	•	•					
Those filter par	ers are weighted b	by HOKLAS labo	oratory (HPCT I	Litimed)				
Calibrated by:	m	<u></u>	_	Approved by:	-lem	y Xon		
Technic	al Officer (Wong Sl	ning Kwai)		Projec	t Manager (Henr	Leung)		

Digital Dust Indicator

30-Mar-24

Date of Calibration

Certificate of Calibration

Description:

-						
Manufacturer:	Sibata Scienti	fic Technology LTD.	Validity of Calib	ration Record	30-May-24	
Model No.:	LD-5R					
Serial No.:	972778					
Equipment No.:	SA-01-07		Sensitivity 0.001 mg/m3	_		
High Volume Sa	ampler No.:	A-01-03	Before Sensitivity Adjustment	735 CPM		
Tisch Calibratio	n Orifice No.:	3864	After Sensitivity Adjustment	735 CPM		
		Ca	libration of 1 hr TSP			
Calibration		Laser Dust Monitor	r	HVS		
Point	M	ass Concentration (µg/	/m3) Ma	ss concentration (ug/m ³)	
	ļ	X-axis	Y-axis			
1	ļ	72.0		141.0		
2		62.0		121.0		
3		52.0		100.0		
Average		62.0		120.7		
Slope , mw = Correlation co	2.050 pefficient* =	0.9999	Intercept, bw =	-6.4333		
		Se	et Correlation Factor			
Particaulate Con	centration by F	High Volume Sampler	$(\mu g/m^3)$	120.7		
Particaulate Con	centration by I	Oust Meter (μg/m ³)		62.0		
Measureing time	e, (min)			60.0		
Set Correlation 1	Factor, SCF					
SCF = [K=High Volume Sampler / Dust Meter, (µg/m3)] 1.9						
	h Volume Sam	npler / Dust Meter, (μ	g/m3)]1.9			
In-house method		npler / Dust Meter, (μ o the instruction manu				
	l in according to	o the instruction manu			rate the Correlation	
The Dust Monitor Factor (CF) betw	I in according to or was compare ween the Dust M	o the instruction manued with a calibrated High Monitor and High Volu	al: gh Volume Sampler and The resultine Sampler.		rate the Correlation	
The Dust Monitor Factor (CF) betw	I in according to or was compare ween the Dust M	o the instruction manued with a calibrated High Monitor and High Volu	al: gh Volume Sampler and The result		rate the Correlation	
The Dust Monitor Factor (CF) betw	I in according to or was compare ween the Dust M	o the instruction manued with a calibrated High Monitor and High Volu	al: gh Volume Sampler and The resultine Sampler.		rate the Correlation	
The Dust Monitor Factor (CF) between Those filter paper	I in according to or was compare ween the Dust Noers are weight	o the instruction manued with a calibrated High Monitor and High Volu	al: gh Volume Sampler and The resultine Sampler. pratory (HPCT Litimed)	was used to gener	rate the Correlation	
The Dust Monitor Factor (CF) between Those filter paper and Calibrated by:	I in according to or was compare ween the Dust Moers are weight	o the instruction manued with a calibrated High Monitor and High Volu	al: gh Volume Sampler and The resultance Sampler. pratory (HPCT Litimed) Approved by	was used to gener	y dag	

Digital Dust Indicator

30-Mar-24

Date of Calibration

Certificate of Calibration

Description:

-						
Manufacturer:	Sibata Scient	ific Technology LTD.	_	Validity of Calib	ration Record	30-May-24
Model No.:	LD-5R					
Serial No.:	972780					
Equipment No.:	SA-01-09		Sensitivity	0.001 mg/m3	_	
High Volume Sa	impler No.:	A-01-03	Before Sensitiv	vity Adjustment	739 CPM	
Tisch Calibration	n Orifice No.:	3864	After Sensitivi	ty Adjustment	739 CPM	
		Ca	libration of 1 h	r TSP		
Calibration		Laser Dust Monitor	•		HVS	
Point	N	lass Concentration (µg/	/m3)	Mas	ss concentration (ug/m^3)
		X-axis			Y-axis	
1		74.0			142.0	
2		64.0			122.0	
3		54.0			100.0	
Average		64.0			121.3	
Slope , mw = Correlation co		0.9996		ept, bw =	-13.066	7
		Se	t Correlation F	actor		
Particaulate Con	centration by	High Volume Sampler ($(\mu g/m^3)$		121.3	
Particaulate Con	centration by	Dust Meter (μg/m ³)			64.0	
Measureing time	e, (min)			60.0		
Set Correlation I	Factor, SCF					
SCF = [K=Hig	h Volume San	npler / Dust Meter, (μ	g/m3)]	1.9		
In-house method	l in according	to the instruction manua	al:			
	-	red with a calibrated Hig		oler and The result	was used to gene	rate the Correlation
		Monitor and High Volunted by HOKLAS labor	_	Litimed)		
Calibrated by:		ml.	_	Approved by:	\-lem	y Xon
Technic	al Officer (Wo	ong Shing Kwai)		Projec	ct Manager (Henr	Leung)

Digital Dust Indicator

Date of Calibration 30-Jan-24

Certificate of Calibration

Description:

Manufacturer:	Sibata Scient	ific Technology LTD.	_	Validity of Calibr	ration Record	30-Mar-24
Model No.:	LD-5R					
Serial No.:	972781					
Equipment No.:	SA-01-10		Sensitivity	0.001 mg/m3	_	
High Volume Sa	mpler No.:	A-01-03	Before Sensiti	vity Adjustment	734 CPM	
Tisch Calibration Orifice No.: 3864 After Sensiti		After Sensitivi	ty Adjustment	734 CPM		
		Cal	libration of 1 h	r TSP		
Calibration		Laser Dust Monitor			HVS	
Point	N.	Iass Concentration (μg/1	m3)	Mas	ss concentration (µ	\lg/m^3)
		X-axis			Y-axis	
1		80.0			133.0	
3		70.0 61.0			115.0	
Average		70.3			116.0	
Slope , mw = Correlation co	1.73 pefficient* =	0.9998	Interd	cept, bw =	-6.2399	
			t Correlation F	actor		
	•	High Volume Sampler (μg/m³)	116.0		
Measureing time	•	Dust Meter (μg/m ³)		70.3 60.0		
Set Correlation F					00.0	
		npler / Dust Meter, (μ	g/m3)]	1.6		
In-house method in according to the instruction manual: The Dust Monitor was compared with a calibrated High Volume Sampler and The result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler. Those filter papers are weighted by HOKLAS laboratory (HPCT Litimed)						
Calibrated by:		ng Shing Kwai)	_		Ct Manager (Henry	

RECALIBRATION DUE DATE:

January 15, 2025

Certificate of Calibration

Calibration Certification Information

Cal. Date: January 15, 2024

Rootsmeter S/N: 438320

Ta: 294

°K

Operator: Jim Tisch

Pa: 755.4

mm Hg

Calibration Model #: TE-5025A

Calibrator S/N: 3864

Run	Vol. Init (m3)	Vol. Final (m3)	ΔVol. (m3)	ΔTime (min)	ΔP (mm Hg)	ΔH (in H2O)
1	1	2	1	1.4380	3.3	2.00
2	3	4	1	1.0270	6.4	4.00
3	5	6	1	0.9180	8.0	5.00
4	7	8	1	0.8750	8.9	5.50
5	9	10	1	0.7230	12.9	8.00

	Data Tabulation					
Vstd	Qstd	$\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right) \left(\frac{Tstd}{Ta}\right)}$		Qa	$\sqrt{\Delta H (Ta/Pa)}$	
(m3)	(x-axis)	(y-axis)	Va	(x-axis)	(y-axis)	
1.0031	0.6975	1.4195	0.9956	0.6924	0.8823	
0.9989	0.9727	2.0075	0.9915	0.9655	1.2477	
0.9968	1.0858	2.2444	0.9894	1.0778	1.3950	
0.9956	1.1378	2.3539	0.9882	1.1294	1.4631	
0.9903	1.3697	2.8390	0.9829	1.3595	1.7645	
	m=	2.11196		m=	1.32248	
QSTD	b=	-0.05043	QA	b=	-0.03134	
	r=	0.99998	4 .	r=	0.99998	

Calculations					
Vstd=	ΔVol((Pa-ΔP)/Pstd)(Tstd/Ta)	Va=	ΔVol((Pa-ΔP)/Pa)		
Qstd= Vstd/ΔTime Qa= Va/ΔTime					
For subsequent flow rate calculations:					
Qstd=	$1/m\left(\left(\sqrt{\Delta H\left(\frac{Pa}{Pstd}\right)\left(\frac{Tstd}{Ta}\right)}\right)-b\right)$	Qa=	$1/m\left(\left(\sqrt{\Delta H(Ta/Pa)}\right)-b\right)$		

Standard Conditions				
Tstd:	298.15 °K			
Pstd:	760 mm Hg			
	Key			
ΔH: calibrator manometer reading (in H2O)				
ΔP: rootsmeter manometer reading (mm Hg)				
Ta: actual absolute temperature (°K)				
Pa: actual barometric pressure (mm Hg)				
b: intercept				
m: slope				

RECALIBRATION

US EPA recommends annual recalibration per 1998 40 Code of Federal Regulations Part 50 to 51, Appendix B to Part 50, Reference Method for the Determination of Suspended Particulate Matter in the Atmosphere, 9.2.17, page 30

Tisch Environmental, Inc. 145 South Miami Avenue Village of Cleves, OH 45002

www.tisch-env.com

TOLL FREE: (877)263-7610 FAX: (513)467-9009

Certificate of Calibration - Wind Monitoring Station

Description: Yau Lai Estate, Bik Lai House

Manufacturer: <u>Davis Instruments</u>

Model No.: <u>Davis7440</u>

Serial No.: MC01010A44

Equipment No.: <u>SA-03-04</u>

Date of Calibration <u>18-Feb-2024</u>

Next Due Date <u>18-Aug-2024</u>

1. Performance check of Wind Speed

Wind Sp	peed, m/s	Difference D (m/s)
Wind Speed Reading (V1)	Anemometer Value (V2)	D = V1 - V2
0.0	0.0	0.0
1.5	1.7	-0.2
2.5	2.4	0.1
4.0	3.8	0.2

2. Performance check of Wind Direction

Wind Di	rection (°)	Difference D (°)
Wind Direction Reading (W1)	Marine Compass Value (W2)	D = W1 - W2
0	0	0.0
90	90	0.0
180	180	0.0
270	270	0.0

Test Specification:

- 1. Performance Wind Speed Test The wind meter was on-site calibrated against the anemometer
- 2. Performance Wind Direction Test The wind meter was on-site calibrated against the marine compass at four direction

Calibrated by:

Wong Shing Kwai

Approved by:

Henry/Leung

Rm 1904, Technology Park 18 On Lai Street, Shatin

NT, Hong Kong

Tel: +852 3841 4388 Website: https://www.hpct.com.hk

Report No. : 00390 | Issue Date : 24 Jul 2023

Application No. : HP00263

Certificate of Calibration

Applicant : Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Sample Description : Submitted equipment stated to be Integrating Sound Level Meter.

Equipment No.: : N-08-12

Manufacturer: : SVANTEK

Other information :

Model No.	SVAN 957
Serial No.	23851
Microphone No.	22391

Date Received : 18 Jul 2023

Test Period : 20 Jul 2023 to 20 Jul 2023

Test Requested : Performance checking for Sound Level Meter

Test Method : The Sound Level Calibrator has been calibrated in accordance with the

documented procedures and using standard and instrument which are

recommended by the manufacturer, or equivalent.

Test conditions : Room Temperature: 22-25 degree Celsius

Relative Humidity: 35-70%

Test Result : Refer to the test result(s) on page 2.

Remark: 1. Information of the sample description provided by the Applicant.

2. The result(s) relate only to the items tested or calibrated.

For and on behalf of HIGH PRECISION CHEMICAL TESTING LIMITED

Rm 1904, Technology Park 18 On Lai Street, Shatin

NT, Hong Kong

Tel: +852 3841 4388 Website: https://www.hpct.com.hk

Report No. : 00390 | Issue Date : 24 Jul 2023

Application No. : HP00263

Certificate of Calibration

Measuring equipment

Description	Sound Calibrator
Manufacturer	Brüel & Kjær
Model No.	TYPE 4231
Serial No.	2326353
Equipment No.	N-02-01

Test Result

Reference value, dB	Indication value, dB	Deviation, dB	Allowed deviation, dB
94.0	93.9	- 0.1	± 1.5
114.0	114.1	+ 0.1	± 1.5

Note

- : 1. "Instrument Readings" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.
 - 2. The indication value was obtained from the average of ten replicated measurement.

Rm 1904, Technology Park 18 On Lai Street, Shatin

NT, Hong Kong

Tel: +852 3841 4388 Website: https://www.hpct.com.hk

Report No. : 00373 Issue Date : 09 May 2023

Application No. : HP00247

Certificate of Calibration

Applicant : Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Sample Description : Submitted equipment stated to be Sound Level Calibrator.

Equipment No.: : N-09-02

Manufacturer: : SVANTEK

Other information : Model No. SV 30A

Serial No. 10965

Date Received : 05 May 2023

Test Period : 08 May 2023 to 08 May 2023

Test Requested : Performance checking for Sound Level Calibrator

Test Method : The Sound Level Meter and Calibrator has been calibrated in accordance with

the documented procedures and using standard and instrument which are

recommended by the manufacturer, or equivalent.

Test conditions : Room Temperature: 22-25 degree Celsius

Relative Humidity: 35-70%

Test Result : Refer to the test result(s) on page 2.

Remark : 1. Information of the sample description provided by the Applicant.

2. The result(s) relate only to the items tested or calibrated.

For and on behalf of HIGH PRECISION CHEMICAL TESTING LIMITED

Rm 1904, Technology Park 18 On Lai Street, Shatin

NT, Hong Kong

Tel: +852 3841 4388 Website: https://www.hpct.com.hk

Report No. : 00373 | Issue Date : 09 May 2023

Application No. : HP00247

Certificate of Calibration

Measuring equipment

Description	Sound Calibrator
Manufacturer	Brüel & Kjær
Model No.	TYPE 4231
Serial No.	2326353
Equipment No.	N-02-01

Description	Sound Meter
Manufacturer	BSWA Technology
Model No.	BSWA 308
Serial No.	570183
Microphone No.	590073
Equipment No.	N-12-01

Test Result

Reference value, dB	Indication value, dB	Deviation, dB	Allowed deviation, dB
94.0	94.2	+ 0.2	± 0.3
114.0	114.3	+ 0.3	± 0.5

Note

- : 1. "Instrument Readings" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.
 - 2. The indication value was obtained from the average of ten replicated measurement.

Rm 1904, Technology Park 18 On Lai Street, Shatin

NT, Hong Kong

Tel: +852 3841 4388 Website: https://www.hpct.com.hk

Report No. : 00430 Issue Date : 08 Sep 2023

Application No. : HP00304

Certificate of Calibration

Applicant : Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Sample Description : Submitted equipment stated to be Integrating Sound Level Meter.

Equipment No.: : N-12-02

Manufacturer: : BSWA Technology

Other information : Model No

Model No.	BSWA 308
Serial No.	570187
Microphone No.	590079

Date Received : 06 Sep 2023

Test Period : 07 Sep 2023 to 07 Sep 2023

Test Requested : Performance checking for Sound Level Meter

Test Method : The Sound Level Calibrator has been calibrated in accordance with the

documented procedures and using standard and instrument which are

recommended by the manufacturer, or equivalent.

Test conditions : Room Temperature: 22-25 degree Celsius

Relative Humidity: 35-70%

Test Result : Refer to the test result(s) on page 2.

Remark: 1. Information of the sample description provided by the Applicant.

2. The result(s) relate only to the items tested or calibrated.

For and on behalf of HIGH PRECISION CHEMICAL TESTING LIMITED

Rm 1904, Technology Park 18 On Lai Street, Shatin

NT, Hong Kong

Tel: +852 3841 4388 Website: https://www.hpct.com.hk

Application No. : HP00304

Certificate of Calibration

Measuring equipment

Description	Sound Calibrator
Manufacturer	Brüel & Kjær
Model No.	TYPE 4231
Serial No.	2326353
Equipment No.	N-02-01

Test Result :

Reference value, dB	Indication value, dB	Deviation, dB	Allowed deviation, dB
94.0	94.2	+ 0.2	± 1.5
114.0	114.2	+ 0.2	± 1.5

Note

- : 1. "Instrument Readings" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.
 - 2. The indication value was obtained from the average of ten replicated measurement.

輝創工程有限公司

Sun Creation Engineering Limited

Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C241168

證書編號

ITEM TESTED / 送檢項目 (Job No. / 序引編號: IC24-0305)

Date of Receipt / 收件日期: 21 February 2024

Description / 儀器名稱

Acoustical Calibrator

Manufacturer / 製造商

Brüel & Kjær

Model No. / 型號

4231

Serial No. / 編號

2326353

Supplied By / 委託者

Cinotech Consultants Limited

Room 1710, Technology Park, 18 On Lai Street,

Shatin, N.T. Hong Kong

TEST CONDITIONS / 測試條件

Temperature / 温度 :

 $(23 \pm 2)^{\circ}$ C

Relative Humidity / 相對濕度 :

 $(50 \pm 25)\%$

Line Voltage / 電壓

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期

3 March 2024

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only.

The results do not exceed specified limits.

These limits refer to manufacturer's published tolerances as requested by the customer.

The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via:

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Hottinger Brüel & Kjær Calibration Laboratory, Denmark
- Agilent Technologies / Keysight Technologies

- Fluke Everett Service Center, USA

Tested By 測試

HT Wong

Assistant Engineer

Certified By 核證

K/C Lee Engineer Date of Issue 簽發日期

Website/網址: www.suncreation.com

4 March 2024

The test equipment used for calibration is traceable to the National Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

輝創工程有限公司

Sun Creation Engineering Limited

Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.:

C241168

證書編號

1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours before the commencement of the test.

2. The results presented are the mean of 3 measurements at each calibration point.

3. Test equipment:

Equipment ID

CL130 CL281

CL281 TST150A Description

Universal Counter

Multifunction Acoustic Calibrator

Measuring Amplifier

Certificate No.

C233799

CDK2302738 C221750

4. Test procedure: MA100N.

5. Results:

5.1 Sound Level Accuracy

UUT	Measured Value	Mfr's Limit	Uncertainty of Measured Value
Nominal Value	(dB)	(dB)	(dB)
94 dB, 1 kHz	93.90	± 0.2	± 0.20
114 dB, 1 kHz	114.00		

5.2 Frequency Accuracy

requestey recuracy			
UUT Nominal Value	Measured Value	Mfr's	Uncertainty of Measured Value
(kHz)	(kHz)	Limit	(Hz)
1	1 000 0	$1 \text{ kHz} \pm 0.1 \%$	+ 0.1

Remark: The uncertainties are for a confidence probability of not less than 95 %.

Note:

Only the original copy or the laboratory's certified true copy is valid.

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration is traceable to the National Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Rm 1904, Technology Park 18 On Lai Street, Shatin

NT, Hong Kong

Tel: +852 3841 4388 Website: https://www.hpct.com.hk

Report No. : 00380 Issue Date : 10 May 2023

Application No. : HP00252

Certificate of Calibration

Applicant : Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Sample Description : Submitted equipment stated to be Sound Level Calibrator.

Equipment No.: : N-13-03

Manufacturer: : SOUNDTEK

Other information : Model No. ST-120

| Serial No. | 181001637

Date Received : 09 May 2023

Test Period : 09 May 2023 to 09 May 2023

Test Requested : Performance checking for Sound Level Calibrator

Test Method : The Sound Level Meter and Calibrator has been calibrated in accordance with

the documented procedures and using standard and instrument which are

recommended by the manufacturer, or equivalent.

Test conditions : Room Temperature: 22-25 degree Celsius

Relative Humidity: 35-70%

Test Result : Refer to the test result(s) on page 2.

Remark : 1. Information of the sample description provided by the Applicant.

2. The result(s) relate only to the items tested or calibrated.

For and on behalf of HIGH PRECISION CHEMICAL TESTING LIMITED

Rm 1904, Technology Park 18 On Lai Street, Shatin

NT, Hong Kong

Tel: +852 3841 4388 Website: https://www.hpct.com.hk

Report No. : 00380 Issue Date : 10 May 2023

Application No. : HP00252

Certificate of Calibration

Measuring equipment

Description	Sound Calibrator
Manufacturer	Brüel & Kjær
Model No.	TYPE 4231
Serial No.	2326353
Equipment No.	N-02-01

Description	Sound Meter
Manufacturer	BSWA Technology
Model No.	BSWA 308
Serial No.	570183
Microphone No.	570605
Equipment No.	N-12-01

Test Result

Reference value, dB	Indication value, dB	Deviation, dB	Allowed deviation, dB
94.0	94.1	+ 0.1	± 0.3
114.0	114.2	+ 0.2	± 0.5

Note

- : 1. "Instrument Readings" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.
 - 2. The indication value was obtained from the average of ten replicated measurement.

Rm 1904, Technology Park 18 On Lai Street, Shatin

NT, Hong Kong

Tel: +852 3841 4388 Website: https://www.hpct.com.hk

Report No. : 00568 | Issue Date : 14 Feb 2024

Application No. : HP00436

Certificate of Calibration

Applicant : Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Sample Description : Submitted equipment stated to be Integrating Sound Level Meter.

Equipment No.: : N-12-03

Manufacturer: : BSWA Technology

Other information : | N

Model No.	BSWA 308
Serial No.	570188
Microphone No.	570608

Date Received : 05 Feb 2024

Test Period : 07 Feb 2024 to 07 Feb 2024

Test Requested : Performance checking for Sound Level Meter

Test Method : The Sound Level Calibrator has been calibrated in accordance with the

documented procedures and using standard and instrument which are

recommended by the manufacturer, or equivalent.

Test conditions : Room Temperature: 22-25 degree Celsius

Relative Humidity: 35-70%

Test Result : Refer to the test result(s) on page 2.

Remark: 1. Information of the sample description provided by the Applicant.

2. The result(s) relate only to the items tested or calibrated.

For and on behalf of HIGH PRECISION CHEMICAL TESTING LIMITED

Rm 1904, Technology Park 18 On Lai Street, Shatin

NT, Hong Kong

Tel: +852 3841 4388 Website: https://www.hpct.com.hk

Report No. : 00568 | Issue Date : 14 Feb 2024

Application No. : HP00436

Certificate of Calibration

Measuring equipment

Description	Sound Calibrator
Manufacturer	Brüel & Kjær
Model No.	TYPE 4231
Serial No.	2326353
Equipment No.	N-02-01

Test Result

Reference value, dB	Indication value, dB	Deviation, dB	Allowed deviation, dB
94.0	94.0	± 0.0	± 1.5
114.0	113.9	- 0.1	± 1.5

Note

- : 1. "Instrument Readings" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.
 - 2. The indication value was obtained from the average of ten replicated measurement.

Rm 1904, Technology Park 18 On Lai Street, Shatin

NT, Hong Kong

Tel: +852 3841 4388 Website: https://www.hpct.com.hk

Application No. : HP00514

Certificate of Calibration

Applicant : Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Sample Description : Submitted equipment stated to be Integrating Sound Level Meter.

Equipment No.: : N-12-01

Manufacturer: : BSWA Technology

Other information :

Model No.	BSWA 308
Serial No.	570183
Microphone No.	590073

Date Received : 09 Apr 2024

Test Period : 09 Apr 2024 to 09 Apr 2024

Test Requested : Performance checking for Sound Level Meter

Test Method : The Sound Level Calibrator has been calibrated in accordance with the

documented procedures and using standard and instrument which are

recommended by the manufacturer, or equivalent.

Test conditions : Room Temperature: 22-25 degree Celsius

Relative Humidity: 35-70%

Test Result : Refer to the test result(s) on page 2.

Remark: 1. Information of the sample description provided by the Applicant.

2. The result(s) relate only to the items tested or calibrated.

For and on behalf of HIGH PRECISION CHEMICAL TESTING LIMITED

Rm 1904, Technology Park 18 On Lai Street, Shatin

NT, Hong Kong

Tel: +852 3841 4388 Website: https://www.hpct.com.hk

Report No. : 00647 Issue Date : 11 Apr 2024

Application No. : HP00514

Certificate of Calibration

Measuring equipment

Description	Sound Calibrator
Manufacturer	Brüel & Kjær
Model No.	TYPE 4231
Serial No.	2326353
Equipment No.	N-02-01

Test Result

Reference value, dB	Indication value, dB	Deviation, dB	Allowed deviation, dB
94.0	94.1	+ 0.1	± 1.5
114.0	114.2	+ 0.2	± 1.5

Note

- : 1. "Instrument Readings" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.
 - 2. The indication value was obtained from the average of ten replicated measurement.

Rm 1904, Technology Park 18 On Lai Street, Shatin

NT, Hong Kong

Tel: +852 3841 4388 Website: https://www.hpct.com.hk

Report No. : 00648 | Issue Date : 11 Apr 2024

Application No. : HP00515

Certificate of Calibration

Applicant : Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Sample Description : Submitted equipment stated to be Integrating Sound Level Meter.

Equipment No.: : N-12-05

Manufacturer: : BSWA Technology

Other information :

Model No.	BSWA 308
Serial No.	580287
Microphone No.	570610

Date Received : 09 Apr 2024

Test Period : 09 Apr 2024 to 09 Apr 2024

Test Requested : Performance checking for Sound Level Meter

Test Method : The Sound Level Calibrator has been calibrated in accordance with the

documented procedures and using standard and instrument which are

recommended by the manufacturer, or equivalent.

Test conditions : Room Temperature: 22-25 degree Celsius

Relative Humidity: 35-70%

Test Result : Refer to the test result(s) on page 2.

Remark: 1. Information of the sample description provided by the Applicant.

2. The result(s) relate only to the items tested or calibrated.

For and on behalf of HIGH PRECISION CHEMICAL TESTING LIMITED

Rm 1904, Technology Park 18 On Lai Street, Shatin

NT, Hong Kong

Tel: +852 3841 4388 Website: https://www.hpct.com.hk

Report No. : 00648 | Issue Date : 11 Apr 2024

Application No. : HP00515

Certificate of Calibration

Measuring equipment

Description	Sound Calibrator
Manufacturer	Brüel & Kjær
Model No.	TYPE 4231
Serial No.	2326353
Equipment No.	N-02-01

Test Result :

Reference value, dB	Indication value, dB	Deviation, dB	Allowed deviation, dB
94.0	94.1	+ 0.1	± 1.5
114.0	114.1	+ 0.1	± 1.5

Note

- : 1. "Instrument Readings" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.
 - 2. The indication value was obtained from the average of ten replicated measurement.

Rm 1904, Technology Park 18 On Lai Street, Shatin

NT, Hong Kong

Tel: +852 3841 4388 Website: https://www.hpct.com.hk

Report No. : 00370 Issue Date : 02 May 2023

Application No. : HP00242

Certificate of Calibration

Applicant : Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Sample Description : Submitted equipment stated to be Integrating Sound Level Meter.

Equipment No.: : SN-01-01

Manufacturer: : SVANTEK

Other information : | Model No. | SVAN 979

Serial No. 27189
Microphone No. 25202

Date Received : 02 May 2023

Test Period : 02 May 2023 to 02 May 2023

Test Requested : Performance checking for Sound Level Meter

Test Method : The Sound Level Calibrator has been calibrated in accordance with the

documented procedures and using standard and instrument which are

recommended by the manufacturer, or equivalent.

Test conditions : Room Temperature: 22-25 degree Celsius

Relative Humidity: 35-70%

Test Result : Refer to the test result(s) on page 2.

Remark: 1. Information of the sample description provided by the Applicant.

2. The result(s) relate only to the items tested or calibrated.

For and on behalf of HIGH PRECISION CHEMICAL TESTING LIMITED

Rm 1904, Technology Park 18 On Lai Street, Shatin

NT, Hong Kong

Tel: +852 3841 4388 Website: https://www.hpct.com.hk

Report No. : 00370 Issue Date : 02 May 2023

Application No. : HP00242

Certificate of Calibration

Measuring equipment

Description	Sound Calibrator
Manufacturer	Brüel & Kjær
Model No.	TYPE 4231
Serial No.	2326353
Equipment No.	N-02-01

Test Result

Reference value, dB	Indication value, dB	Deviation, dB	Allowed deviation, dB
94.0	93.9	- 0.1	± 1.5
114.0	114.0	± 0.0	± 1.5

Note

- : 1. "Instrument Readings" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.
 - 2. The indication value was obtained from the average of ten replicated measurement.