

Certificate of Calibration - Wind Monitoring Station

Description: Yau Lai Estate, Bik Lai House

Manufacturer: <u>Davis Instruments</u>

Model No.: <u>Davis7440</u>

Serial No.: MC01010A44

Equipment No.: SA-03-04

Date of Calibration 17-Aug-2025

Next Due Date 17-Feb-2026

1. Performance check of Wind Speed

Wind Sp	peed, m/s	Difference D (m/s)
Wind Speed Reading (V1)	Anemometer Value (V2)	D = V1 - V2
0.0	0.0	0.0
1.5	1.5	0.0
2.5	2.4	0.1
4.0	3.9	0.1

2. Performance check of Wind Direction

Wind Di	rection (°)	Difference D (°)
Wind Direction Reading (W1)	Marine Compass Value (W2)	D = W1 - W2
0	0	0.0
90	90	0.0
180	180	0.0
270	270	0.0

Test Specification:

- 1. Performance Wind Speed Test The wind meter was on-site calibrated against the anemometer
- 2. Performance Wind Direction Test The wind meter was on-site calibrated against the marine compass at four direction

Calibrated by:

Wong Shing Kwai

Approved by:

Henry Leung

RECALIBRATION DUE DATE:

January 7, 2026

Certificate of Calibration

Calibration Certification Information

Cal. Date: January 7, 2025 Rootsmeter S/N: 438320 Ta: 293 °K

Operator: Jim Tisch Pa: 759.0 mm Hg

Calibration Model #: TE-5025A Calibrator S/N: 3864

Run	Vol. Init (m3)	Vol. Final (m3)	ΔVol. (m3)	ΔTime (min)	ΔP (mm Hg)	ΔH (in H2O)
1	1	2	1	1.4590	3.2	2.00
2	3	4	1	1.0360	6.4	4.00
3	5	6	1	0.9160	8.0	5.00
4	7	8	1	0.8800	8.8	5.50
5	9	10	1	0.7270	12.7	8.00

		Data Tabula	tion		
Vstd	Qstd	$\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right) \left(\frac{Tstd}{Ta}\right)}$		Qa	√∆H(Ta/Pa)
(m3)	(x-axis)	(y-axis)	Va	(x-axis)	(y-axis)
1.0114	0.6932	1.4252	0.9958	0.6825	0.8787
1.0071	0.9721	2.0156	0.9916	0.9571	1.2427
1.0050	1.0971	2.2535	0.9895	1.0802	1.3893
1.0039	1.1408	2.3635	0.9884	1.1232	1.4572
0.9987	1.3737	2.8505	0.9833	1.3525	1.7574
	m=	2.08969		m=	1.30853
QSTD	b=	-0.02374	QA	b=	-0.01464
	r=	0.99985		r=	0.99985

	Calculatio	ns			
Vstd=	ΔVol((Pa-ΔP)/Pstd)(Tstd/Ta)	Va=	ΔVol((Pa-ΔP)/Pa)		
Qstd=	Vstd/∆Time	Qa=	Va/ΔTime		
For subsequent flow rate calculations:					
Qstd=	$1/m\left(\left(\sqrt{\Delta H\left(\frac{Pa}{Pstd}\right)\left(\frac{Tstd}{Ta}\right)}\right)-b\right)$	Qa=	$1/m\left(\left(\sqrt{\Delta H\left(Ta/Pa\right)}\right)-b\right)$		

	Standard Conditions	
Tstd:	298.15 °K	
Pstd:	760 mm Hg	
	Key	
ΔH: calibrate	or manometer reading (in H2O)	
ΔP: rootsme	ter manometer reading (mm Hg)
Ta: actual ab	osolute temperature (°K)	
Pa: actual ba	arometric pressure (mm Hg)	
b: intercept		
m: slope		

RECALIBRATION

US EPA recommends annual recalibration per 1998 40 Code of Federal Regulations Part 50 to 51, Appendix B to Part 50, Reference Method for the Determination of Suspended Particulate Matter in the Atmosphere, 9.2.17, page 30

FAX: (513)467-9009

High-Volume TSP Sampler 5-POINT CALIBRATION DATA SHEET

File No. MA16034/05/0055

Project No.	AM1 - Tin Hau	Temple					
Date:	13-A	ug-25	Next Due Date:	13-	Oct-25	Operator:	SK
Equipment No.:	A-0	1-05			S2310		10599
			Ambient C	ondition			
Temperatur	re, Ta (K)	303.1	Pressure, Pa	(mmHg)		754.3	
		Or	ifice Transfer Star	ndard Informa	ntion		
Serial	l No.	3864	Slope, mc	0.05914	Intercept	t, bc	-0.02377
Last Calibra	ation Date:	7-Jan-25	r	nc x Qstd + bo	$c = [\Delta H \times (Pa/760)]$) x (298/Ta)]	1/2
Next Calibra	ation Date:	7-Jan-26			(Pa/760) x (298/7		
	<u> </u>		Calibration of	TSP Sampler		TELO	
Calibration	ΔH (orifice),		rfice	Oatd (CEM)	AW (IIVC) :	HVS	760) ** (200/T-)1 ^{1/2}
Point	in. of water	[ΔH x (Pa/76	50) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	Δ W (HVS), in. of water		760) x (298/Ta)] ^{1/2} Y-axis
1	13.0		3.56	60.63	7.8		2.76
2	10.0		3.12	53.22	5.8		2.38
3	7.0		2.61	44.59	3.8		1.93
4	5.0		2.21	37.75	2.5		1.56
5	2.6		1.59	27.33	1.3		1.13
Slope , mw = Correlation		0	.9988	intercept, bw	-0.267	75	
			Set Point Ca	lculation			
From the Regres	eld Calibration C sion Equation, the	mw x (, -		
Remarks:	et rome, w = (m	w x Qsiu + ow)	\(\lambda(\)\(\)\(\)\(\)	147 270)	3.37		
Conducted by:	Wong Sh	ing Kwai	Signature:	<i>(</i> 2)	<u></u>	Date:	13-Aug-25
Checked by:	Henry	Leung	Signature:	-lem	y day	Date:	13-Aug-25

High-Volume TSP Sampler 5-POINT CALIBRATION DATA SHEET

File No. MA16034/08/0055

Project No.	AM2 - Sai Tso V	Van Recreation	Ground				
Date:	13-Aı	ıg-25	Next Due Date:	13-	Oct-25	Operator:	SK
Equipment No.:	A-01	1-08	Model No.:	GS	S2310	Serial No.	1287
			Ambient C	Condition			
Temperatur	re, Ta (K)	303.1	Pressure, Pa			754.3	
Serial	No	3864	Slope, mc	ndard Informa 0.05914	Ation Intercept	t he	-0.02377
Last Calibra		7-Jan-25			$c = [\Delta H \times (Pa/760]]$		
Next Calibra		7-Jan-26			$(Pa/760) \times (298/7)$		
		•	•			/1 /	
			Calibration of	TSP Sampler			
Calibration		Oı	fice	_		HVS	
Point	ΔH (orifice), in. of water	[ΔH x (Pa/76	50) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of water		50) x (298/Ta)] ^{1/2} '-axis
1	13.5		3.63	61.77	8.4		2.86
2	10.5		3.20	54.53	6.5		2.52
3	7.8		2.76	47.05	4.3		2.05
4	5.2		2.25	38.49	2.5		1.56
5	3.5		1.85	31.65	1.4		1.17
Slope, mw = Correlation of *If Correlation C	coefficient* =		.9993	- -	-0.628		
			Set Point C	alculation			
From the TSP Fig From the Regress		e "Y" value acco		z (Pa/760) v (29	98/Ta)1 ^{1/2}		
Therefore, Se	t Point; W = (m		² x (760 / Pa) x ('				
Remarks:							
Checked by:			Signature:	1 0	X. X	Date:	13-Aug-25
Checked by:	Henry	Leung	Signature:	Tem	7000/	Date:	13-Aug-25

High-Volume TSP Sampler 5-POINT CALIBRATION DATA SHEET

File No. MA16034/03/0055

Project No.	AM3 - Yau Lai	Estate, Bik Lai	House			<u>-</u>	
Date:	13-A	ug-25	Next Due Date:	13-	Oct-25	Operator:	SK
Equipment No.:	A-0	01-03	Model No.:	GS	S2310	Serial No.	10379
			Ambient C	Condition			
Temperatur	re, Ta (K)	303.1	Pressure, Pa			754.3	
Caria1	N.		rifice Transfer Sta	1	I	. h.a	0.02277
Serial Last Calibra		3864 7-Jan-25	Slope, mc	0.05914	Intercept $c = [\Delta H \times (Pa/760)]$		-0.02377
Next Calibra	The state of the s	7-Jan-25 7-Jan-26			$(Pa/760) \times (298/7)$		
ricat Canon	ation Date.			Q514 ([211 A	(1 u/ 100) A (200)	(((((((((((((((((((
			Calibration of	TSP Sampler			
Calibration		0	rfice			HVS	
Point	ΔH (orifice), in. of water	[ΔH x (Pa/7	60) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of water		0) x (298/Ta)] ^{1/2} -axis
1	13.2		3.59	61.09	8.5	2	2.88
2	10.3		3.17	54.01	6.2	2	2.46
3	7.4		2.69	45.84	4.0	1	.98
5	5.5 3.3		2.32 1.79	39.57 30.74	2.5 1.4		.17
	0.0574 coefficient* = Coefficient < 0.99		0.9981	Intercept, bw = -	-0.644	15	
			Set Point C	alculation			
From the Regres	eld Calibration (sion Equation, the sion Equation, the sion Equation) the sion of the sion	ne "Y" value acc		`	98/Ta)] ^{1/2}		
Remarks: Conducted by:	Wong Sl	ning Kwai	Signature:		<u></u>	Date:	13-Aug-25
Checked by:	Henry	Leung	Signature:	-lem	y Xon	Date:	13-Aug-25

High-Volume TSP Sampler 5-POINT CALIBRATION DATA SHEET

File No. MA20003/55/033 CKL 2 - Flat 103 Cha Kwo Ling Village Project No. 4-Jul-25 Next Due Date: 4-Sep-25 Date: Operator: SK Equipment No.: A-01-55 Model No.: TE 5170 Serial No. 1956 **Ambient Condition** Temperature, Ta (K) 303.8 Pressure, Pa (mmHg) 754.1 **Orifice Transfer Standard Information** 0.05914 Intercept, bc 3864 Slope, mc -0.02377 Serial No. mc x Qstd + bc = $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ 7-Jan-25 Last Calibration Date: Qstd = $\{ [\Delta H \times (Pa/760) \times (298/Ta)]^{1/2} -bc \} / mc$ Next Calibration Date: 7-Jan-26 **Calibration of TSP Sampler** Orfice Calibration $[\Delta W \times (Pa/760) \times (298/Ta)]^{1/2}$ ΔH (orifice), Ostd (CFM) ΔW (HVS), in. $[\Delta H \ x \ (Pa/760) \ x \ (298/Ta)]^{1/2}$ Point in. of water X - axis of water Y-axis 2.98 1 13.4 3.61 61.47 9.1 11.2 7.2 2 3.30 56.23 2.65 9.3 3.01 51.27 2.31 4 5.1 2.23 38.07 2.6 1.59 5 3.7 2.0 1.90 32.49 1.40 By Linear Regression of Y on X Slope , mw = 0.0551 Intercept, bw = -0.4575 Correlation coefficient* = 0.9969 *If Correlation Coefficient < 0.990, check and recalibrate. **Set Point Calculation** From the TSP Field Calibration Curve, take Qstd = 43 CFM From the Regression Equation, the "Y" value according to mw x Qstd + bw = $[\Delta W \times (Pa/760) \times (298/Ta)]^{1/2}$ Therefore, Set Point; W = $(\text{mw x Qstd} + \text{bw})^2 \times (760 / \text{Pa}) \times (\text{Ta} / 298) =$ 3.76 Remarks: Conducted by: Wong Shing Kwai Checked by: Henry Leung

High-Volume TSP Sampler 5-POINT CALIBRATION DATA SHEET

File No. MA20003/55/034 CKL 2 - Flat 103 Cha Kwo Ling Village Project No. 4-Sep-25 Next Due Date: 4-Nov-25 Date: Operator: SK Equipment No.: A-01-55 Model No.: TE 5170 Serial No. 1956 **Ambient Condition** 303.9 755.9 Temperature, Ta (K) Pressure, Pa (mmHg) **Orifice Transfer Standard Information** 0.05914 Intercept, bc 3864 Slope, mc -0.02377 Serial No. mc x Qstd + bc = $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ 7-Jan-25 Last Calibration Date: Qstd = $\{ [\Delta H \times (Pa/760) \times (298/Ta)]^{1/2} -bc \} / mc$ Next Calibration Date: 7-Jan-26 **Calibration of TSP Sampler** Orfice Calibration $[\Delta W \times (Pa/760) \times (298/Ta)]^{1/2}$ ΔH (orifice), Ostd (CFM) ΔW (HVS), in. $[\Delta H \ x \ (Pa/760) \ x \ (298/Ta)]^{1/2}$ Point in. of water X - axis of water Y-axis 3.00 1 13.3 3.60 61.30 9.2 11.1 3.29 7.3 2 56.04 2.67 9.2 3.00 51.05 2.29 4 5.0 2.21 37.74 2.5 1.56 5 3.6 32.09 2.1 1.43 1.87 By Linear Regression of Y on X Slope, mw = 0.0549Intercept, bw = -0.4242 Correlation coefficient* = *If Correlation Coefficient < 0.990, check and recalibrate. **Set Point Calculation** From the TSP Field Calibration Curve, take Qstd = 43 CFM From the Regression Equation, the "Y" value according to mw x Qstd + bw = $[\Delta W \times (Pa/760) \times (298/Ta)]^{1/2}$ Therefore, Set Point; $W = (mw \times Qstd + bw)^2 \times (760 / Pa) \times (Ta / 298) =$ 3.84 Remarks: Conducted by: Wong Shing Kwai Checked by: Henry Leung

Certificate of Calibration

Description:	Digital Dust Indicator		Date of Calibration	30-Jul-25
Manufacturer:	Sibata Scientific Technology LTD.		Validity of Calibration Record	30-Sep-25
Model No.:	LD-5R			
Serial No.:	972777			
Equipment No.:	SA-01-06	Sensitivity _	0.001 mg/m3	
High Volume Sa	mpler No.: <u>A-01-03</u> E	Before Sensitiv	rity Adjustment 645	
Tisch Calibration	1 Orifice No.: 3864	After Sensitivit	y Adjustment 645	
	Calib	ration of 1 h	·TSP	
Calibration	Laser Dust Monitor		HVS	
Point	Mass Concentration (μg/m ³ X-axis	3)	Mass concentratio Y-axis	n (μg/m ³)
1	76.0		135.0	
2	56.0		115.0	
3	52.0		108.0	
Average	61.3		119.3	
_	ession of Y on X 	Interc	ept, bw = 52.8	065
		Correlation Fa	actor	
Particaulate Con		. 1	119.3	
Particaulate Con	Set C centration by High Volume Sampler (μg centration by Dust Meter (μg/m³)	. 1	119.3 61.3	
Particaulate Con Measureing time	Set Contration by High Volume Sampler (μg centration by Dust Meter (μg/m³)	. 1	119.3	
Particaulate Con Measureing time Set Correlation F	Set Contration by High Volume Sampler (μg centration by Dust Meter (μg/m³)	y/m ³)	119.3 61.3	
Particaulate Con Measureing time Set Correlation F SCF = [K=High	Set Contration by High Volume Sampler (μg centration by Dust Meter (μg/m³) (, (min) Factor , SCF	y/m ³)	61.3 60.0	
Particaulate Con Measureing time Set Correlation F SCF = [K=High In-house method The Dust Monito	Set Contration by High Volume Sampler (μg centration by Dust Meter (μg/m³) (min) Factor , SCF Nolume Sampler / Dust Meter, (μg/m²) in according to the instruction manual: or was compared with a calibrated High	n3)]	119.3 61.3 60.0	enerate the Correlation
Particaulate Con Measureing time Set Correlation F SCF = [K=High In-house method The Dust Monito Factor (CF) betw	Set Contration by High Volume Sampler (µgontration by Dust Meter (µg/m³) (min) Factor, SCF (Nolume Sampler / Dust Meter, (µg/m²) (in according to the instruction manual:	w/m³) m3)] Volume Sampler.	119.3 61.3 60.0 1.9	enerate the Correlation
Particaulate Con Measureing time Set Correlation F SCF = [K=High In-house method The Dust Monito Factor (CF) betw Those filter pap Calibrated by:	Set Contration by High Volume Sampler (µgcentration by Dust Meter (µg/m³) (min) Factor , SCF Nolume Sampler / Dust Meter, (µg/n²) in according to the instruction manual: or was compared with a calibrated High veen the Dust Monitor and High Volume wers are weighted by HOKLAS labora	w/m³) m3)] Volume Sampler.	119.3 61.3 60.0 1.9	my Xvorg

Certificate of Calibration

Description:	Digital Dust Indicator		Date of	of Calibration	30-Jul-25
Manufacturer:	Sibata Scientific Technology LTD.	_	Validity of Calibr	ation Record	30-Sep-25
Model No.:	LD-5R				
Serial No.:	972778				
Equipment No.:	SA-01-07	Sensitivity	0.001 mg/m3		
High Volume Sa	mpler No.: <u>A-01-03</u>	Before Sensiti	vity Adjustment	735 CPM	
Tisch Calibration	n Orifice No.: 3864	After Sensitivi	ty Adjustment	735 CPM	
	Cai	libration of 1 h	r TSP		
Calibration	Laser Dust Monitor			HVS	
Point	Mass Concentration (μg/: X-axis	m3)	Mas	s concentration (μ Y-axis	g/m^3)
1	75.0			141.0	
2	63.0			118.0	
3	52.0			105.0	
Average	63.3			121.3	
-	ression of Y on X	Interd	cept, bw =	21.8665	
	Se	t Correlation F	actor		
	centration by High Volume Sampler ($\mu g/m^3$		121.3	
	centration by Dust Meter (µg/m³)			63.3	
Measureing time	(min)				
Vat ('orralation				60.0	
	Factor , SCF h Volume Sampler / Dust Meter, (με	g/m3)]	1.9	60.0	
SCF = [K=Hig	Factor, SCF		1.9	60.0	
SCF = [K=Hig In-house method The Dust Monito	Factor, SCF h Volume Sampler / Dust Meter, (µg l in according to the instruction manual or was compared with a calibrated Hig	ıl: gh Volume Samj			ate the Correlation
SCF = [K=High In-house method The Dust Monito Factor (CF) betw	Factor, SCF h Volume Sampler / Dust Meter, (µg	ıl: gh Volume Samj me Sampler.	oler and The result		ate the Correlation
In-house method The Dust Monite Factor (CF) betw Those filter pap	Factor, SCF h Volume Sampler / Dust Meter, (µµ l in according to the instruction manual or was compared with a calibrated High ween the Dust Monitor and High Volum bers are weighted by HOKLAS laborated	ıl: gh Volume Samj me Sampler.	oler and The result Litimed) Approved by:		y Over

Digital Dust Indicator

Date of Calibration 30-Jul-25

Certificate of Calibration

Description:

Tisch Calibration Orifice No.: 3864 After Sensitivity Adjustment 739 Calibration of 1 hr TSP Calibration Point Mass Concentration (μg/m3) Mass concentration (μg/m3)	CPM
Equipment No.: SA-01-09 Sensitivity 0.001 mg/m3 High Volume Sampler No.: A-01-03 Before Sensitivity Adjustment 739 Tisch Calibration Orifice No.: 3864 After Sensitivity Adjustment 739 Calibration of 1 hr TSP Calibration Point Mass Concentration (μg/m3) Mass concentration (μg/m3) 1 76.0 76.0 2 62.0 62.0 3 56.0 56.0	HVS ntration (μg/m³) 7-axis 134.0 113.0
High Volume Sampler No.: A-01-03 Before Sensitivity Adjustment 739 Tisch Calibration Orifice No.: 3864 After Sensitivity Adjustment 739 Calibration of 1 hr TSP Calibration Point Mass Concentration (μg/m3) Mass concentration (μg/m3) 1 76.0 2 62.0 3 56.0	HVS ntration (μg/m³) 7-axis 134.0 113.0
Tisch Calibration Orifice No.: 3864 After Sensitivity Adjustment 739 Calibration of 1 hr TSP Calibration Point Mass Concentration (μg/m3) Mass concentration (μg/m3) 1 76.0 2 62.0 3 56.0 3 56.0 3 56.0 3 56.0 3 56.0 3 56.0 3 56.0 3 3 56.0 3 <	HVS ntration (μg/m³) 7-axis 134.0 113.0
	HVS ntration (μg/m³) 7-axis 134.0 113.0
Calibration Point Laser Dust Monitor Mass Concentration (μg/m3) Mass concentration 1 76.0 2 62.0 3 56.0	ntration (μg/m³) 7-axis 134.0 113.0
Calibration Point Mass Concentration (μg/m3) Mass concentration (μg/m3) 1 76.0 2 62.0 3 56.0	ntration (μg/m³) 7-axis 134.0 113.0
Point Mass Concentration (μg/m3) Mass concentration (μg/m3) 1 76.0 2 62.0 3 56.0	7-axis 134.0 113.0 100.0
1 76.0 2 62.0 3 56.0	134.0 113.0 100.0
2 62.0 3 56.0	113.0
	100.0
Average 64.7	15.7
By Linear Regression of Y on X Slope , mw = 1.6646 Intercept, bw = Correlation coefficient* = 0.9958	8.0253
Set Correlation Factor	
Particaulate Concentration by High Volume Sampler (µg/m³)	115.7
Particaulate Concentration by Dust Meter (μg/m³)	64.7
Measureing time, (min)	60.0
Set Correlation Factor , SCF SCF = [K=High Volume Sampler / Dust Meter, (µg/m3)]	
In-house method in according to the instruction manual:	
The Dust Monitor was compared with a calibrated High Volume Sampler and The result was us Factor (CF) between the Dust Monitor and High Volume Sampler. Those filter papers are weighted by HOKLAS laboratory (HPCT Litimed)	d to generate the Correlation
Calibrated by: Approved by: Technical Officer (Wong Shing Kwai) Project Man	leny (Xoy) ger (Henry Leung)

Digital Dust Indicator

30-Jul-25

Date of Calibration

Certificate of Calibration

Description:

-						
Manufacturer:	Sibata Scient	ific Technology LTD.	_	Validity of Calib	ration Record	30-Sep-25
Model No.:	LD-5R					
Serial No.:	972781					
Equipment No.:	SA-01-10		Sensitivity	0.001 mg/m3	_	
High Volume Sa	mpler No.:	A-01-03	Before Sensitiv	rity Adjustment	734 CPM	
Tisch Calibration	n Orifice No.:	3864	After Sensitivit	y Adjustment	734 CPM	
		Ca	libration of 1 hr	TSP		
Calibration		Laser Dust Monitor			HVS	
Point	M	fass Concentration (μg/	m3)	Mas	ss concentration (µ	ug/m³)
		X-axis			Y-axis	
1		75.0			132.0	
2		66.0			115.0	
3		55.0			101.0	
Average		65.3		116.0		
Slope , mw = Correlation co		99 0.9936		ept, bw =	15.3953	
		Se	t Correlation Fa	ictor		
Particaulate Concentration by High Volume Sampler (µg/m³)				116.0		
Particaulate Con	centration by I	Dust Meter (μg/m ³)		65.3		
Measureing time	e, (min)			60.0		
Set Correlation I	Factor, SCF					
SCF = [K=High Volume Sampler / Dust Meter, (µg/m3)] 1.8						
In-house method	l in according t	to the instruction manua	al:			
Factor (CF) betw	veen the Dust I	ed with a calibrated Hig Monitor and High Volu Ited by HOKLAS labo	me Sampler.		was used to gener	rate the Correlation
Calibrated by:		ong Shing Kwai)	_	Approved by: Projec	Ct Manager (Henry	Leung)

Rm 1904, Technology Park 18 On Lai Street, Shatin

NT, Hong Kong

Tel: +852 3841 4388 Website: https://www.hpct.com.hk

Report No. : 00964 | Issue Date : 30 Dec 2024

Application No. : HP00820

Certificate of Calibration

Applicant : Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Sample Description : Submitted equipment stated to be Sound Level Calibrator.

Equipment No.: : N-16-01

Manufacturer: : Hangzhou Aihua Instruments Co., Ltd.

Other information : Model No.

Model No.	AWA6021A
Serial No.	1023253

Date Received : 27 Dec 2024

Test Period : 30 Dec 2024 to 30 Dec 2024

Test Requested : Performance checking for Sound Level Calibrator

Test Method : The Sound Level Meter and Calibrator has been calibrated in accordance with

the documented procedures and using standard and instrument which are

recommended by the manufacturer, or equivalent.

Test conditions : Room Temperature: 22-25 degree Celsius

Relative Humidity: 35-70%

Test Result : Refer to the test result(s) on page 2.

Remark : 1. Information of the sample description provided by the Applicant.

2. The result(s) relate only to the items tested or calibrated.

For and on behalf of HIGH PRECISION CHEMICAL TESTING LIMITED

Rm 1904, Technology Park 18 On Lai Street, Shatin

NT, Hong Kong

Tel: +852 3841 4388 Website: https://www.hpct.com.hk

Report No. : 00964 | Issue Date : 30 Dec 2024

Application No. : HP00820

Certificate of Calibration

Measuring equipment

Description	Sound Calibrator
Manufacturer	Brüel & Kjær
Model No.	TYPE 4231
Serial No.	2326353
Equipment No.	N-02-01

Description	Sound Meter
Manufacturer	BSWA Technology
Model No.	BSWA 308
Serial No.	570183
Microphone No.	570605
Equipment No.	N-12-01

Test Result

Reference value, dB	Indication value, dB	Deviation, dB	Allowed deviation, dB
94.0	94.3	+ 0.3	± 0.3
114.0	114.3	+ 0.3	± 0.5

Note

- : 1. "Instrument Readings" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.
 - 2. The indication value was obtained from the average of ten replicated measurement.

Rm 1904, Technology Park 18 On Lai Street, Shatin

NT, Hong Kong

Tel: +852 3841 4388 Website: https://www.hpct.com.hk

Report No. : 01015 Issue Date : 04 Feb 2025

Application No. : HP00868

Certificate of Calibration

Applicant : Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Sample Description : Submitted equipment stated to be Sound Level Calibrator.

Equipment No.: : N-16-02

Manufacturer: : Hangzhou Aihua Instruments Co., Ltd.

Other information : Model No.

Model No. AWA6021A
Serial No. 1023064

Date Received : 28 Jan 2025

Test Period : 03 Feb 2025 to 04 Feb 2025

Test Requested : Performance checking for Sound Level Calibrator

Test Method : The Sound Level Meter and Calibrator has been calibrated in accordance with

the documented procedures and using standard and instrument which are

recommended by the manufacturer, or equivalent.

Test conditions : Room Temperature: 22-25 degree Celsius

Relative Humidity: 35-70%

Test Result : Refer to the test result(s) on page 2.

Remark : 1. Information of the sample description provided by the Applicant.

2. The result(s) relate only to the items tested or calibrated.

For and on behalf of HIGH PRECISION CHEMICAL TESTING LIMITED

Rm 1904, Technology Park 18 On Lai Street, Shatin

NT, Hong Kong

Tel: +852 3841 4388 Website: https://www.hpct.com.hk

Report No. : 01015 Issue Date : 04 Feb 2025

Application No. : HP00868

Certificate of Calibration

Measuring equipment

Description	Sound Calibrator
Manufacturer	Brüel & Kjær
Model No.	TYPE 4231
Serial No.	2326353
Equipment No.	N-02-01

Description	Sound Meter
Manufacturer	SVANTEK
Model No.	SVAN 977
Serial No.	92677
Microphone No.	10352
Equipment No.	N-14-01

Test Result

Reference value, dB	Indication value, dB	Deviation, dB	Allowed deviation, dB
94.0	94.2	+ 0.2	± 0.3
114.0	114.3	+ 0.3	± 0.5

Note

- : 1. "Instrument Readings" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.
 - 2. The indication value was obtained from the average of ten replicated measurement.

Rm 1904, Technology Park 18 On Lai Street, Shatin

NT, Hong Kong

Tel: +852 3841 4388 Website: https://www.hpct.com.hk

Report No. : 00870 Issue Date : 14 Oct 2024

Application No. : HP00731

Certificate of Calibration

Applicant : Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Sample Description : Submitted equipment stated to be Integrating Sound Level Meter.

Equipment No.: : N-08-12

Manufacturer: : SVANTEK

Other information :

Model No.	SVAN 957
Serial No.	23851
Microphone No.	22391

Date Received : 07 Oct 2024

Test Period : 09 Oct 2024 to 09 Oct 2024

Test Requested : Performance checking for Sound Level Meter

Test Method : The Sound Level Calibrator has been calibrated in accordance with the

documented procedures and using standard and instrument which are

recommended by the manufacturer, or equivalent.

Test conditions : Room Temperature: 22-25 degree Celsius

Relative Humidity: 35-70%

Test Result : Refer to the test result(s) on page 2.

Remark: 1. Information of the sample description provided by the Applicant.

2. The result(s) relate only to the items tested or calibrated.

For and on behalf of HIGH PRECISION CHEMICAL TESTING LIMITED

Rm 1904, Technology Park 18 On Lai Street, Shatin

NT, Hong Kong

Tel: +852 3841 4388 Website: https://www.hpct.com.hk

Application No. : HP00731

Certificate of Calibration

Measuring equipment

Description	Sound Calibrator
Manufacturer	Brüel & Kjær
Model No.	TYPE 4231
Serial No.	2326353
Equipment No.	N-02-01

Test Result

Reference value, dB	Indication value, dB	Deviation, dB	Allowed deviation, dB
94.0	94.0	± 0.0	± 1.5
114.0	114.2	+ 0.2	± 1.5

Note

- : 1. "Instrument Readings" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.
 - 2. The indication value was obtained from the average of ten replicated measurement.

Rm 1904, Technology Park 18 On Lai Street, Shatin

NT, Hong Kong

Tel: +852 3841 4388 Website: https://www.hpct.com.hk

Application No. : HP00732

Certificate of Calibration

Applicant : Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Sample Description : Submitted equipment stated to be Integrating Sound Level Meter.

Equipment No.: : N-12-02

Manufacturer: : BSWA Technology

Other information :

Model No.	BSWA 308
Serial No.	570187
Microphone No.	590079

Date Received : 07 Oct 2024

Test Period : 09 Oct 2024 to 09 Oct 2024

Test Requested : Performance checking for Sound Level Meter

Test Method : The Sound Level Calibrator has been calibrated in accordance with the

documented procedures and using standard and instrument which are

recommended by the manufacturer, or equivalent.

Test conditions : Room Temperature: 22-25 degree Celsius

Relative Humidity: 35-70%

Test Result : Refer to the test result(s) on page 2.

Remark: 1. Information of the sample description provided by the Applicant.

2. The result(s) relate only to the items tested or calibrated.

For and on behalf of HIGH PRECISION CHEMICAL TESTING LIMITED

Rm 1904, Technology Park 18 On Lai Street, Shatin

NT, Hong Kong

Tel: +852 3841 4388 Website: https://www.hpct.com.hk

Application No. : HP00732

Certificate of Calibration

Measuring equipment

Description	Sound Calibrator
Manufacturer	Brüel & Kjær
Model No.	TYPE 4231
Serial No.	2326353
Equipment No.	N-02-01

Test Result :

Reference value, dB	Indication value, dB	Deviation, dB	Allowed deviation, dB
94.0	93.9	- 0.1	± 1.5
114.0	113.7	- 0.3	± 1.5

Note

- : 1. "Instrument Readings" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.
 - 2. The indication value was obtained from the average of ten replicated measurement.

Rm 1904, Technology Park 18 On Lai Street, Shatin

NT, Hong Kong

Tel: +852 3841 4388 Website: https://www.hpct.com.hk

Report No. : 01074 Issue Date : 19 Mar 2025

Application No. : HP00912

Certificate of Calibration

Applicant : Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Sample Description : Submitted equipment stated to be Integrating Sound Level Meter.

Equipment No.: : N-12-03

Manufacturer: : BSWA Technology

Other information :

Model No.	BSWA 308
Serial No.	570188
Microphone No.	570608

Date Received : 17 Mar 2025

Test Period : 18 Mar 2025 to 18 Mar 2025

Test Requested : Performance checking for Sound Level Meter

Test Method : The Sound Level Calibrator has been calibrated in accordance with the

documented procedures and using standard and instrument which are

recommended by the manufacturer, or equivalent.

Test conditions : Room Temperature: 22-25 degree Celsius

Relative Humidity: 35-70%

Test Result : Refer to the test result(s) on page 2.

Remark: 1. Information of the sample description provided by the Applicant.

2. The result(s) relate only to the items tested or calibrated.

For and on behalf of HIGH PRECISION CHEMICAL TESTING LIMITED

Rm 1904, Technology Park 18 On Lai Street, Shatin

NT, Hong Kong

Tel: +852 3841 4388 Website: https://www.hpct.com.hk

Report No. : 01074 Issue Date : 19 Mar 2025

Application No. : HP00912

Certificate of Calibration

Measuring equipment

Description	Sound Calibrator
Manufacturer	Brüel & Kjær
Model No.	TYPE 4231
Serial No.	2326353
Equipment No.	N-02-01

Test Result

Reference value, dB	Indication value, dB	Deviation, dB	Allowed deviation, dB
94.0	93.9	- 0.1	± 1.5
114.0	114.0	± 0.0	± 1.5

Note

- : 1. "Instrument Readings" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.
 - 2. The indication value was obtained from the average of ten replicated measurement.

Rm 1904, Technology Park 18 On Lai Street, Shatin

NT, Hong Kong

Tel: +852 3841 4388 Website: https://www.hpct.com.hk

Report No. : 01075 | Issue Date : 19 Mar 2025

Application No. : HP00913

Certificate of Calibration

Applicant : Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Sample Description : Submitted equipment stated to be Integrating Sound Level Meter.

Equipment No.: : N-12-04

Manufacturer: : BSWA Technology

Other information : Model No

Model No.	BSWA 308
Serial No.	580238
Microphone No.	570605

Date Received : 17 Mar 2025

Test Period : 18 Mar 2025 to 18 Mar 2025

Test Requested : Performance checking for Sound Level Meter

Test Method : The Sound Level Calibrator has been calibrated in accordance with the

documented procedures and using standard and instrument which are

recommended by the manufacturer, or equivalent.

Test conditions : Room Temperature: 22-25 degree Celsius

Relative Humidity: 35-70%

Test Result : Refer to the test result(s) on page 2.

Remark: 1. Information of the sample description provided by the Applicant.

2. The result(s) relate only to the items tested or calibrated.

For and on behalf of HIGH PRECISION CHEMICAL TESTING LIMITED

Rm 1904, Technology Park 18 On Lai Street, Shatin

NT, Hong Kong

Tel: +852 3841 4388 Website: https://www.hpct.com.hk

Report No. : 01075 Issue Date : 19 Mar 2025

Application No. : HP00913

Certificate of Calibration

Measuring equipment

Description	Sound Calibrator
Manufacturer	Brüel & Kjær
Model No.	TYPE 4231
Serial No.	2326353
Equipment No.	N-02-01

Test Result

Reference value, dB	Indication value, dB	Deviation, dB	Allowed deviation, dB
94.0	94.2	+ 0.2	± 1.5
114.0	114.1	+ 0.1	± 1.5

Note

- : 1. "Instrument Readings" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.
 - 2. The indication value was obtained from the average of ten replicated measurement.